
IEEE TRANSACTIONS AND JOURNALS TEMPLATE 1

Supervisory Control under Indefinite Actuator
and Sensor Attacks: Prescribed Resilience

Shoma Matsui, Julien Bourgain-Wilbal, Yudai Saito,
Ziyue Ma, Gregory Faraut, Kai Cai, and Karen Rudie

Abstract— We study a new security problem in discrete-
event systems with indefinite actuator and sensor attacks:
Any controllable events disabled by the supervisor can be
re-enabled, and any observable events can be concealed
by attackers. We consider that the plant contains unsafe
states, each of which is associated with a safety require-
ment specifying the number of attacks on actuators and
the number of attacks on sensors that should be withstood
by the supervisor to prevent the plant from entering the
unsafe state. Thus, these safety requirements capture the
prescribed resilience of the supervisor to be designed. To
that end, we first construct an “unreliable plant” which
includes all possible attacks in the plant, and derive a
model of limited behavior of the unreliable plant according
to the safety requirements, which is called an “attack-
compromised plant”. We then identify the unsafe states
in the attack-compromised plant, and develop a synthesis
procedure to compute a feasible partial-observation and
physically-admissible supervisor (if one exists) with pre-
scribed resilience. Physical admissibility is a novel prop-
erty which indicates that no disabled event is subject to a
sensor attack.

Index Terms— Supervisory control, discrete-event sys-
tems, automata, security

I. INTRODUCTION

Actuators and sensors in many industrial systems are among
the primary targets for attackers as they are crucial interfaces
to external environments, and may cause fatal incidents once
they are compromised. Thus, it is a typical requirement for
system designers to have controllers resilient against potential
attacks on actuators and sensors. One challenge for system

S. Matsui is with SCREEN Semiconductor Solutions Co., Ltd., Kyoto,
Japan. (s.matsui@screen.co.jp)

K. Rudie is with the Department of Electrical and Computer Engineer-
ing and Ingenuity Labs Research Institute, Queen’s University, Kingston,
Canada. (karen.rudie@queensu.ca)

J. B. Wilbal and G. Faraut are with the Department of Mechanical
Engineering, University Paris-Saclay, ENS Paris-Saclay, France. (J. B.
Wilbal: julien.bourgain--wilbal@ens-paris-saclay.fr, G.
Faraut: gregory.faraut@ens-paris-saclay.fr)

Y. Saito and K. Cai are with the Department of Core Infor-
matics, Osaka Metropolitan University, Osaka, Japan. (Y. Saito:
sd24350m@st.omu.ac.jp, K. Cai: cai@omu.ac.jp)

Z. Ma is with the School of Electro-Mechanical Engineering, Xidian
University, Xi’an 710071, China. (maziyue@xidian.edu.cn)

S. Matsui and K. Rudie were supported by the Natural Sciences
and Engineering Research Council of Canada under NSERC Discovery
Grant RGPIN-2020-04279. Z. Ma was supported in part by National
Natural Science Foundation of China (62373313), the Shaanxi Provin-
cial Natural Science Foundation (2025JC-YBMS-658). Y. Saito and K.
Cai were supported by JST ASPIRE Grant no. JPMJAP2519, JSPS
KAKENHI Grant nos. 21H04875 and 22KK0155.

designers in creating resilient supervisor is that attack targets
are usually unknown a priori.

In this paper, we model our target system as a discrete-
event system (DES) [1], [2], and consider that the attacker’s
goal is to steer the system to its set of unsafe states. For
example, an unsafe state can be the malfunction of production
machines in a factory or a car collision at an intersection.
In particular, we consider that the attacker may conduct
two types of attacks against the system: actuator attacks
and sensor attacks. Under actuator attacks, the attacker may
enable any of the controllable events disabled by a supervisor
so that the system may execute disabled events, disobeying
the supervisor’s intended control commands. On the other
hand, sensor attacks disrupt the supervisor’s observation by
making observable events unobservable, thus rendering the
supervisor no longer able to make decisions based on the
partial observation.

Several attack schemes on actuators and sensors have been
studied in the DES community. For example, in [3], [4], the
plant is equipped with a security module to mitigate actuator
attacks, and the attacker can enable several vulnerable actuator
events. The main idea is that the security module disables all
controllable events once it detects attacks. In [5], on the other
hand, the security module only disables necessary controllable
events to prevent damage. The work of [6] considers a situation
where a subset of controllable events is subject to attack and
the rest of the controllable events can be definitely disabled at
high costs; the goal is to maximize the specification behavior
while minimizing disablement of defensible events. Estimation
and prevention of actuator attacks are addressed in [7]. Covert
actuator attackers and the corresponding decidability problem
are studied in [8].

For sensor attacks, the work of [9] introduced the system
model in which the supervisor knows multiple observation
maps possibly under attack. The work of [10], on the other
hand, proposed a framework of sensor deception attack where
the attacker has the same observability as the supervisor and
can insert or delete a subset of observable events, called
“attackable events”. The subsequent work in [11] extended
the synthesis methodology of robust supervisors in [10] to
a bounded attack in which the attacker has limited time
to edit sensor events. A further study of sensor deception
attack is in [12]. Focusing on detecting sensor attacks, the
authors of [13] introduced a joint state estimator which tracks
all possible attacks and sets of state estimation. Besides the
attack prevention, from the attacker’s viewpoint, several works

2 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

in [14], [15], [16], [17] addressed the synthesis of sensor
deception strategies without tampering with the supervisor’s
observation, thus permitting stealthy attacks. In addition, a
decidability problem of existence of resilient nonblocking
supervisors is investigated in [18]. Sensor attacks in labeled
Petri nets is also studied in [19]. More recently, methods
for synthesizing a robust supervisor against both actuator and
sensor attacks have been developed in [20], [21], [22], [23],
[24]. Also see [25] for a review on this topic.

While most existing works of actuator and/or sensor attacks
impose constraints on which events may be attacked, we con-
sider by contrast that all controllable events and all observable
events are subject to the actuator attack and the sensor attack,
respectively. In other words, the attack model in this paper
is indefinite. How to model the behavior of the plant under
indefinite actuator/sensor attacks presents new complexity in
supervisory control design, and most existing methods yield
no solution. The work of [26] is the most relevant to this paper,
as it first considered indefinite attacks on actuators, but did not
consider indefinite sensor attacks.

As a main contribution of this paper, we extend the work
of indefinite actuator attacks in [26] to both actuator and
sensor attacks. That is, we consider a new security problem of
synthesizing a supervisor which provides prescribed resilience
against both indefinite actuator attacks and indefinite sensor
attacks at the same time. Solving this problem enables system
designers to build a supervisor based on the given demand
of how resilient the supervisor should be without the need
to know specific attacker policies such as where, when, and
in which order to attack actuators and sensors; this is in
sharp contrast to a supervisor which is resilient to only
predetermined attack targets.

Extending the setting to indefinite actuator attacks in [26],
we consider that the system designer is given safety require-
ments for both actuator and sensor attacks (respectively de-
noted by Ra and Rs) as prescribed resilience of the supervisor,
which specifies the number of actuator/sensor attacks that a
supervisor should endure.1 This extended setting makes the su-
pervisory control design for prescribed resilience significantly
more challenging than that in [26], because not only actuator
attacks can be either observable or unobservable (depending on
whether or not the attacked controllable events are observable),
but also the supervisor cannot have a priori knowledge of
partial observation (since every observable event is subject to
sensor attacks).

To address these challenges we develop several new con-
cepts and a solution procedure as follows. First, we extend the
attack model in [26] to encompass indefinite attacks on both
actuator and sensors. In this model, we embed all possible
attacks into the original plant (denoted by G) by introducing
two types of pseudo-events: actuator attack events and sensor
attack events, based respectively on subsets of controllable

1In practice, the safety requirements Ra and Rs are best determined based
on historical attack statistics and feasible windows for applying emergency
measures or human interventions. In this way, even if the number of attacks
may exceed Ra/Rs, the supervisor with prescribed resilience can be used as
a trigger (with Ra/Rs as thresholds) so as to apply an emergency action to
reset or reconfigure the system.

and observable events, and adding parallel transitions by these
attack events to the original plant, resulting in an enhanced
plant called an unreliable plant (denoted by G̃). We then
construct an “attack-compromised plant” (denoted by Gcom)
which is a model of limited behavior of the unreliable plant
according to the safety requirements. We then formulate our
problem using this extended attack model, and develop a new
synthesis procedure to compute a supervisor (denoted by V
if one exists) against both actuator and sensor attacks within
the resilience prescribed by the given safety requirements.
As the last and essential step of our procedure, we ensure
that the resulting supervisor is physically admissible in that it
makes consistent control decisions for pseudo-events and their
corresponding original events.

The rest of this paper is organized as follows. In Section II
we present notation and two main concepts of supervisory
control theory of DES, namely controllability and observabil-
ity, which we employ in this paper. Section III introduces
notions and system models required to consider indefinite
actuator and sensor attacks, and formulates the problem of
resilient supervisory control. We then present in Section IV the
procedure of designing supervisors with prescribed resilience,
and we show that our procedure yields a solution whenever
one exists. Finally, we conclude this paper in Section V.

II. PRELIMINARIES

In supervisory control theory (SCT) of discrete-event sys-
tems (DES) [1], [27], a plant to be controlled is modeled as
a finite-state automaton denoted by a 4-tuple

G = (Q,Σ, δ, q0) (1)

where Q is a set of states, Σ is a set of events, δ : Q×Σ → Q
is a (partial) transition function, and q0 is the initial state. The
transition function δ is extended to δ : Q × Σ∗ → Q in the
usual way (here Σ∗ is the Kleene closure). We write δ(q, ω)! to
mean that δ(q, ω) is defined. We denote the length and prefix-
closure of a string ω by |ω| and ω, respectively. Moreover, the
language generated by a plant G in (1) is denoted by L(G),
which is defined as L(G) := {ω ∈ Σ∗ : δ(q0, ω) ∈ Q}. The
prefix-closure of a language L ⊆ Σ∗ is denoted by L which
is defined by L := {ω ∈ Σ∗ : (∃ω′ ∈ Σ∗)ωω′ ∈ L}. The
language L is said to be prefix-closed if L = L. Note that
L(G) = L(G) by construction. Consider two automata G1 =
(Q1,Σ1, δ1, q0,1) and G2 = (Q2,Σ2, δ2, q0,2). We denote by
G1 ∥ G2 their parallel composition (cf. [2]).

To represent the ability of a supervisor to control and
observe certain events in the plant G, the set of events Σ is
partitioned into controllable and uncontrollable event subsets
(denoted by Σc and Σuc), or observable and unobservable
events (denoted by Σo and Σuo). That is, for a plant G, we
have that Σ = Σc ∪̇ Σuc and Σ = Σo ∪̇ Σuo. A natural
projection P : Σ∗ → Σ∗

o is defined recursively by

P (ε) := ε

P (σ) :=

{
σ if σ ∈ Σo

ε if σ ∈ Σuo

P (ωσ) := P (ω)P (σ) for ω ∈ Σ∗ and σ ∈ Σ.

AUTHOR et al.: TITLE 3

Thus the natural projection P removes unobservable events
from a given string, which can be extended to P : 2Σ

∗ → 2Σ
∗
o

by P (L) :=
⋃

ω∈L P (ω) for a language L ⊆ Σ∗.
The central notions of SCT are controllability and observ-

ability, which are specific conditions for a given language.

Definition 1 (Controllability). (cf. [1]) Given a prefix-closed
language L ⊆ Σ∗ and a set of uncontrollable events Σuc, a
prefix-closed language M ⊆ Σ∗ is said to be controllable with
respect to L and Σuc if MΣuc ∩ L ⊆ M.

Definition 2 (Observability). (cf. [1]) Given a prefix-closed
language L ⊆ Σ∗ and a natural projection P : Σ∗ → Σ∗

o, a
prefix-closed language M ⊆ Σ∗ is said to be observable with
respect to L and P if for all ω, ω′ ∈ M and σ ∈ Σc,

P (ω) = P (ω′) ∧ ωσ ∈ M ∧ ω′ ∈ M ∧ ω′σ ∈ L ⇒ ω′σ ∈ M.

Roughly speaking, the controllability condition in Defini-
tion 1 states that for every string in M , its one-step con-
tinuation via an arbitrary uncontrollable event (allowed by
L) remains in M . The observability condition, on the other
hand, requires that for any two lookalike strings in M , control
decisions after those strings should be the same, i.e., there
should be no control conflict for lookalike strings.

A partial-observation supervisor in SCT is a mapping V :
P (L(G)) → 2Σc that prescribes which controllable events in
Σc to disable after the observation of strings in P (L(G)).
The result of supervisory control is represented by a generated
language of G under control of V , denoted by L(V/G), which
is recursively defined as follows [2]:

1. ε ∈ L(V/G)
2. (∀σ ∈ Σ)ω ∈ L(V/G) ∧ ωσ ∈ L(G) ∧ σ /∈ V (P (ω)) ⇔

ωσ ∈ L(V/G)

A feasible partial-observation supervisor V must make the
same control decision for strings in the plant that look the
same to V , i.e., for strings ω, ω′ ∈ L(G), if P (ω) = P (ω′)
then V (ω) = V (ω′). We say that V synthesizes the language
LK if L(V/G) = LK . It has been shown that there exists a
feasible supervisor V (with respect to L(G)) that synthesizes
LK if and only if LK is controllable with respect to L(G) and
Σc, and observable with respect to L(G) and P [28]. Since
the mapping V can be represented by an automaton (called a
realization [2]), we henceforth refer to V and its automaton
representation interchangeably as “supervisor”.

III. PROBLEM FORMULATION

In this section, we formulate the problem of synthesizing
resilient supervisors against indefinite actuator and sensor
attacks. To this end, we first introduce the setting and modeling
of indefinite attacks. Our aim is to synthesize a supervisor
V for the original plant G, where V satisfies the resilience
requirement that an imposed specification is enforced if no
more than prescribed numbers of actuator/sensor attacks occur.
Thus we need a representation for “an event in G has been
attacked” and thereby construct an augmented plant which
captures the behavior of the original plant whose actuators
and sensors are subject to attacks.

A. Attack Events and Unreliable Plant
To model the system’s behavior under indefinite attacks,

we introduce two new types of event subsets, actuator attack
events Σa and sensor attack events Σs, which represent
the attacker’s actions of actuator attack and sensor attack,
respectively. Events in Σa and Σs will be used to count,
respectively, the numbers of indefinite actuator and sensor
attacks. Specifically, we define Σa and Σs by adding a
subscript a to every controllable event in Σc and a subscript
s to every observable event in Σo, i.e.,

Σa = {σa : σ ∈ Σc} (2)
Σs = {σs : σ ∈ Σo}. (3)

The actuator attack events in Σa correspond to the events in Σc

that may be enabled by the attacker, while the sensor attack
events in Σs to those in Σo that may be concealed by the
attacker. Thus, all events in Σa are uncontrollable, and all
events in Σs are unobservable. We emphasize that these special
events are to model the attacker’s actions, and do not exist in
the original plant. In other words, events in Σa and Σs are
“pseudo”-events.

Each of Σa and Σs can be further partitioned into two
subsets as follows:

Σo,a = {σa : σ ∈ Σc ∩ Σo}
Σuo,a = {σa : σ ∈ Σc ∩ Σuo}
Σc,s = {σs : σ ∈ Σc ∩ Σo}
Σuc,s = {σs : σ ∈ Σuc ∩ Σo}

where Σo,a, Σuo,a, Σc,s, and Σuc,s are called subsets of ob-
servable actuator attack events, unobservable actuator attack
events, controllable sensor attack events, and uncontrollable
sensor attack events, respectively. As subsets of Σa, events
in Σo,a and Σuo,a are uncontrollable; and as subsets of Σs,
events in Σc,s and Σuc,s are unobservable. Table I summarizes
the controllability and observability status of events in these
subsets. Each attack event represents either an actuator attack

Subset Controllable Observable

Σo,a p ✓
Σuo,a p p
Σc,s ✓ p
Σuc,s p p

TABLE I: Controllability/observability status of attack events

or a sensor attack. Since the observability status of events in
Σo is not affected by actuator attacks, and the controllability
status of events in Σc is not affected by sensor attacks,
attack events in Σo,a are observable, and those in Σc,s are
controllable. The reason why the events in Σc,s can be treated
as controllable is because their corresponding original events
are controllable and thus can be prevented from occurring; if
the original events are disabled and do not even occur, there
cannot be any sensor attacks, which means effectively that
the corresponding pseudo-events in Σc,s cannot occur. In this
sense, we categorize events in Σc,s as controllable events.

With the introduced attacker events, we encode all possi-
bilities of the system’s behavior under indefinite attacks. The

4 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

idea is to add parallel transitions of attack events to those
labeled by their corresponding original events. We call such
an attack-encoded plant an unreliable plant.

Definition 3 (Unreliable Plant). Given a plant G =
(Q,Σ, δ, q0) in (1), Σa in (2), and Σs in (3), an unreliable
plant is a four-tuple

G̃ = (Q, Σ̃, δ̃, q0) (4)

where

Σ̃ = Σ ∪̇ Σa ∪̇ Σs

δ̃ = δ ∪ {(q, σa, q
′) : δ(q, σ) = q′ ∧ σa ∈ Σa ∧ σ ∈ Σc}

∪ {(q, σs, q
′) : δ(q, σ) = q′ ∧ σs ∈ Σs ∧ σ ∈ Σo}.

(5)

The transition function δ̃ in (5) indicates that we add
duplicated transitions labeled by the events σa ∈ Σa and
σs ∈ Σs, wherever their corresponding events are defined by
the original transition function δ. This also reflects that we do
not know how powerful attackers may be a priori.

For convenience, we henceforth denote the subset of con-
trollable events in G̃ (namely Σc ∪ Σc,s) by Σ̃c, the subset
of uncontrollable events in G̃ (namely Σuc ∪ Σuc,s ∪ Σa) by
Σ̃uc, the subset of observable events in G̃ (namely Σo ∪Σo,a)
by Σ̃o, and the subset of unobservable events in G̃ (namely
Σuo ∪ Σs ∪ Σuo,a) by Σ̃uo. In summary,

Σ̃c = Σc ∪ Σc,s

Σ̃uc = Σuc ∪ Σuc,s ∪ Σa

Σ̃o = Σo ∪ Σo,a

Σ̃uo = Σuo ∪ Σs ∪ Σuo,a.

B. Safety Requirements

Consider a plant G = (Q,Σ, δ, q0) as in (1), and a subset
Qu ⊆ Q of unsafe states to be avoided. For an unsafe state
qu ∈ Qu, a safety requirement on qu is expressed by a pair of
numbers (Ra(qu), Rs(qu)), which requires that even if there
are up to Ra(qu) actuator attacks and Rs(qu) sensor attacks
on every path from the initial state to the unsafe state qu, this
state qu should still be avoided. Different unsafe states in Qu

may have different “danger levels”, and thus may be associated
with different safety requirements in general.

Formally, we define two functions: an actuator safety re-
quirement Ra : Qu → N0 and a sensor safety requirement
Rs : Qu → N0 as the required resilience against actuator
attacks and sensor attacks, respectively (where N0 denotes the
set of non-negative integers). These two functions assign two
non-negative integers to each unsafe state qu ∈ Qu, which
represent upper bounds of actuator and sensor attacks the
supervisor should be resilient against. We now provide an
example to illustrate the concepts introduced so far.

Example 1. Consider the plant G in Figure 1. This plant
consists of seven states, namely Q = {q0, q1, q2, q3, q4, q5, q6},
and q4 and q5 are unsafe states, i.e., Qu = {q4, q5}. The
set of controllable events is Σc = {σ1, σ3} and the set of

q0 q1 q2 q3

q4 q5

q6
σ1

σ3

σ4

σ3

σ3σ2σ1σ2

σ1

Fig. 1: Example plant G

observable events is Σo = {σ1, σ2, σ3}. From Σc and Σo,
the sets of actuator attack events and sensor attack events are
Σa = {σ1,a, σ3,a} and Σs = {σ1,s, σ2,s, σ3,s}, respectively.
Note that σ4 is neither controllable nor observable; hence, it
is not subject to attacks.

q0 q1 q2 q3

q4 q5

q6
σ1

σ1,a, σ1,s

σ3, σ3,a, σ3,s

σ4

σ3

σ3,a, σ3,s

σ3

σ3,a

σ3,s

σ2

σ2,s

σ1

σ1,a

σ1,s

σ2σ2,s

σ1

σ1,a, σ1,s

Fig. 2: Example unreliable plant G̃

Following Definition 3, the unreliable plant G̃ of G in
Figure 1 is depicted in Figure 2. The additional transitions
in G̃ labeled by events in Σa and Σs are uncontrollable and
unobservable, respectively.

To analyze how the attacker can affect the supervisor, let us
first examine a special case where no attacks are considered,
namely Ra(q4) = Ra(q5) = Rs(q4) = Rs(q5) = 0. This
is in fact the case of conventional supervisory control. By
inspecting the unreliable plant G̃ in Figure 2, it can be verified
that the supervisor in this case only disables σ1 at q2 and σ3

at q3.
Next, let us examine the case where Ra(q4) = Ra(q5) =

2 and Rs(q4) = Rs(q5) = 0, i.e., only actuator attacks are
considered. This is a situation that the previous work [26]
addresses. In this case, it can be seen in Figure 2 that σ1

at q0 and σ3 at q1 need to be disabled to eliminate other
possibilities than the attacker enables σ1 at q0 and σ3 at q1,
that is, string σ1,aσ3,a occurs. This is because by Ra(q4) = 2,
we consider up to two actuator attacks for unsafe state q4, and
if either σ1 at q0 or σ3 at q1 occurs without attack, then the
attacker can forcibly enable σ1 at q2, resulting in the plant
which uncontrollably reaches unsafe state q4. After observing
σ1,aσ3,a, the supervisor disables σ1 at q2 while it enables σ1

at q3, since strings σ1,aσ3,a and σ1,aσ3,aσ3 are distinguishable
and the supervisor considers that no more attacks may occur
(i.e., σ3,s at q2 is not supposed to happen in this case).

Finally, let us introduce a sensor attack to this example by
considering the sensor safety requirement Rs(q5) = 1 (in
addition to Rs(q4) = 0 and Ra(q4) = Ra(q5) = 2), that
is, the attacker can conduct up to one sensor attack. Given
that σ3 is observable and we consider indefinite attacks, it is
possible that the attacker conceals σ3 at q2 after σ1,aσ3,a, i.e.,
σ1,aσ3,aσ3,s occurs in Figure 2. In such a case, the supervisor
which disables σ1 at q2 after string σ1,aσ3,a while enabling
σ1 at q3 after string σ1,aσ3,aσ3,s is no longer feasible, since
σ1,aσ3,a and σ1,aσ3,aσ3,s look the same from the supervisor’s

AUTHOR et al.: TITLE 5

observation. As a result, the supervisor also needs to disable
σ1 at q3 after string σ1,aσ3,aσ3,s.1

This example illustrates that even one sensor attack could
make the supervisor infeasible (if it is resilient only against
actuator attacks), which cannot be addressed by the method
in [26]. This motivates us to take sensor attacks into account
in addition to actuator attacks, and develop a new solution for
this more general and challenging case.

C. Resilient Supervisory Control Problem
In this subsection, we formulate our problem of designing

supervisors satisfying prescribed resilience for the unreliable
plant G̃ in (4) introduced in Section III-A. Note however that
strings in L(G̃) contain arbitrary numbers of actuator/sensor
attacks. Not all of these strings need to be considered, be-
cause our target supervisor is required to endure numbers
of actuator/sensor attacks no more than the prescribed safety
requirements Ra and Rs introduced in Section III-B. Thus, in
the following, we first extract the subset of behavior of the
unreliable plant G̃ according to Ra and Rs. For convenience,
we denote natural projections extracting actuator attack events
and sensor attack events from a given string in L(G̃) by
Pa : Σ̃∗ → Σ∗

a and Ps : Σ̃
∗ → Σ∗

s , respectively.

Definition 4 (Attack-Compromised Language). Consider an
unreliable plant G̃ = (Q, Σ̃, δ̃, q0) in (4), a set of unsafe states
Qu ⊆ Q, an actuator safety requirement Ra, and a sensor
safety requirement Rs. The attack-compromised sublanguage
of L(G̃) is defined as follows2:

Lcom(G̃,Qu, Ra, Rs) :={
ω ∈ L(G̃) : |Pa(ω)| ≤ ra ∧ |Ps(ω)| ≤ rs

∧
(
(∀t ∈ ω)(∀qu ∈ Qu) δ̃(q0, t) = qu ⇒
|Pa(t)| ≤ Ra(qu) ∧ |Ps(t)| ≤ Rs(qu)

)}
(6)

where ra = maxqu∈Qu
Ra(qu) and rs = maxqu∈Qu

Rs(qu).

We write Lcom(G̃,Qu, Ra, Rs) to stress its dependence on
G̃,Qu, Ra, Rs; but when these are clear from the context, we
refer to Lcom(G̃,Qu, Ra, Rs) simply as Lcom .

In (6), we first limit by “|Pa(ω)| ≤ ra ∧ |Ps(ω)| ≤ rs”
the numbers of actuator and sensor attacks in each string
ω ∈ L(G̃) to the maximum values of the respective safety
requirements, since we do not need to consider the unreliable
plant’s behavior when the numbers of actuator/sensor attacks
are beyond the maximum safety requirements. Then, we
further limit by the condition in the third and forth lines of
(6) the number of actuator and sensor attacks in each string ω
that either reaches or passes an unsafe state qu to the numbers
Ra(qu) and Rs(qu), respectively.

1If q6 represents a “desired” state in the system (i.e., a marked state in
DES), one could interpret that even one sensor attack can cause somewhat
catastrophic results, although we do not consider marked states in this paper
and thus disabling σ1 at q3 merely results in possibly more conservative
behavior of the system.

2This definition, in fact, reflects that once G reaches an unsafe state, we
are not required to prevent G from reaching further unsafe states. This can
be seen in many traditional supervisory control problems of DES. However,
future work could include exploring how to mitigate damage or recover from
damage once the systems reaches or passes through an unsafe state.

L(G̃)Lcom

σa σa

σa

q4σs

σs σs

Fig. 3: Visualization of L(G̃) and Lcom ; symbol represents
arbitrary strings without attack events (namely strings in Σ∗), and
each dot represents a state in G̃ (which is arbitrary except one
specified as q4), so q4 above a dot on the blue line indicates that
the blue string reaches q4. We abuse notation here and use the labels
σa and σs to indicate some actuator or sensor attack; i.e., σa and σs
can represent different actuator/sensor attack events.

Example 2. Consider again the example G̃ in Figure 2,
Ra(q4) = Ra(q5) = 2, Rs(q4) = 0, and Rs(q5) = 1.
Figure 3 depicts a conceptional diagram of L(G̃) and Lcom .
The arrows in black color illustrate a string going outside Lcom

by “|Pa(ω)| ≤ ra” where ra = maxqu∈{q4,q5} Ra(qu) = 2,
since it contains more than two actuator attack events in Σa

and thus does not need to be considered. The arrows in blue
color show a string going outside Lcom by the third and forth
lines of (6), since it reaches unsafe state q4 with Rs(q4) = 0
but contains at least one sensor attack event σs. The arrows
in red color indicate a string going outside Lcom due to
“|Ps(ω)| ≤ rs” where rs = maxqu∈{q4,q5} Rs(qu) = 1, since
it contains more than one sensor attack event σs.

Thus, to construct Lcom from G̃ in Figure 2, we remove
from L(G̃) all strings containing more than two actuator attack
events and/or more than one sensor attack events, and strings
which reach q4 and contain at least one actuator attack event.
(Note that Ra(q4) = Ra(q5) = ra = 2 and Rs(q5) = rs =
1, i.e., three of the four resilience specifications are met by
ensuring that no more than the maximum numbers of attacks,
namely, ra and rs.)

Remark 1. If Ra (resp., Rs) has the same value for all unsafe
states in Qu, then “|Pa(ω)| ≤ ra” and “|Pa(t)| ≤ Ra(qu)”
(resp., “|Ps(ω)| ≤ rs” and “|Ps(t)| ≤ Rs(qu)”) in (6) yield
the same result, since Ra(qu) = ra and Rs(qu) = rs for all
qu ∈ Qu. In such a special case, we can simplify (6) as

Lcom(G̃,Qu, ra, rs) :={
ω ∈ L(G̃) : |Pa(ω)| ≤ ra ∧ |Ps(ω)| ≤ rs

}
where ra and rs are the safety requirements identical for all
unsafe states.

Now that we have defined Lcom ⊆ L(G̃) to be the subset
of the unreliable plant’s behavior that should our supervisor
design be focused on according to the prescribed resilience,
we next define the specification language (denoted by LK)
by excluding from Lcom those strings which reach or pass an
unsafe state in Qu, i.e.,

LK := Lcom \ {ω ∈ Lcom : (∃t ∈ ω) δ̃(q0, t) ∈ Qu}. (7)

6 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

Moreover, we consider a partial-observation supervisor V
for the unreliable plant G̃. Recall from Section III-A that the
controllable events in the unreliable plant G̃ are those original
ones in Σc and those pseudo-events in Σc,s. Thus, supervisor
V is a mapping V : P (L(G̃)) → 2Σ̃c , where P : Σ̃∗ → Σ̃∗

o.
However, the control decision of V must be consistent for
each original-pseudo pair (σ, σs) ∈ (Σc ∩ Σo,Σc,s). This is
because if a controllable event σ ∈ Σc ∩ Σo is disabled by
V , then σ cannot even occur and a sensor attack on σ is
impossible (i.e., σs cannot occur); on the other hand, if σ
is not disabled by V , then a sensor attack on σ is possible
(i.e., σs can occur). In fact, supervisor V cannot physically
enable/disable σs ∈ Σc,s, but can equivalently do so by
enabling/disabling the corresponding original σ ∈ Σc ∩ Σo.
Therefore, to ensure consistency of the control decisions,
we introduce a new concept of physically-admissible partial-
observation supervisor V : P (L(G̃)) → 2Σ̃c as follows.

Definition 5 (Physically Admissible Partial-Observation Su-
pervisor). Given an unreliable plant G̃ and a natural pro-
jection P : Σ̃∗ → Σ̃∗

o, a partial-observation supervisor V :

P (L(G̃)) → 2Σ̃c is said to be physically admissible if

(∀ω ∈ L(G̃),∀σ ∈ Σc ∩ Σo)σ ∈ V (P (ω)) ⇔ σs ∈ V (P (ω))
(8)

Condition (8) requires that if event σ in the original plant is
disabled, then sensor attack event σs corresponding to σ is also
disabled, and vice versa. This ensures that no disabled event
is subject to a sensor attack, by applying consistent control
decisions to original events and sensor attack events.

q0 q1 q2

σ1
σ1

σ2

(a) Example plant G2

q0 q1 q2

σ1, σ1,a, σ1,s
σ1, σ1,a, σ1,s

σ2, σ2,a, σ2,s

(b) Unreliable plant G̃2

Fig. 4: Example plant G2 and unreliable plant G̃2 for the illustration
of physically admissible partial-observation supervisor

Example 3. To illustrate Definition 5, let us consider an
example plant in Figure 4a. Suppose that Σ = Σc = Σo =
{σ1, σ2} (i.e., all events are both controllable and observable)
and Qu = {q2} which gives us the unreliable plant G̃2 in
Figure 4b. According to Table I, in G̃2, events σ1, σ1,a, σ2

and σ2,a are observable, events σ1,s and σ2,s are unobservable,
events σ1, σ1,s, σ2, and σ2,s are controllable, and events σ1,a

and σ2,a are uncontrollable.

p p

σ1,s
σ2

σ1

σ1 σ1

(a) Partial-observation supervisor (not physi-
cally admissible)

p

p

σ1,s

σ1

(b) Partial-observation super-
visor (physically admissible)

Fig. 5: Partial-observation supervisors based on G2 and G̃2 in
Figure 4 with Ra(q2) = 0 and Rs(q2) = 1; symbol p on edges
represents the supervisor’s decision to disable events.

Let us first consider a special case where Ra(q2) = 0 and
Rs(q2) = 1 for G̃2 (Figure 4b with σ1,a, σ2,a removed), i.e.,

no actuator attacks are considered, while one sensor attack
should be tolerated. In this case, consider a partial-observation
supervisor in Figure 5a. First, at state q0 of G̃2, the sensor
attack event σ1,s is allowed since Rs(q2) = 1 means that at
least one sensor attack can be tolerated. If the sensor attack
event σ1,s occurs from state q0 of G̃2, the event σ1 must
be disabled. This is because the sequence σ1,sσ1 drives the
unreliable plant G̃2 to the unsafe state q2. Note, though, that
while the string σ1,sσ1,s also leads G̃2 to unsafe state q2, our
supervisor need not disable σ1,s at state q1 of G̃2. The reason
the supervisor may allow σ1,s to occur at this point is because
the assumption that Rs(q2) = 1 means that if σ1,s occurs once,
we can essentially assume it does not occur again because
although in the real system it may occur a second time, we
guarantee a correct solution only for the situations in which
there are no more than the prescribed number of sensor attacks
given by Rs.

We also see that the supervisor in Figure 5a disables σ1 at
the initial state q0 of G̃. This is because σ1 is disabled after
σ1,s occurs (as reasoned above) but the strings ε and σ1,s look
the same to the supervisor (since σ1,s is unobservable) so the
supervisor has to make the same control decisions after seeing
nothing and after seeing σ1,s.

Here, it can be seen that the supervisor in Figure 5a is not
physically admissible, since it enables σ1,s but disables σ1 at
q0 of G̃2, violating condition (8) for ω = ε and σ = σ1.
We can, however, construct a physically-admissible (partial-
observation) supervisor in Figure 5b based on Figure 5a
by disabling σ1,s at q0 of G̃2. Thus, we see that physical
inadmissibility can arise as long as there is a sensor attack
(even if there is no actuator attack). This issue is therefore
distinctive from the previous work [26], and a new technique
will be developed to ensure physical admissibility.

σ1,a σ2

σ2,s

σ1,s

σ2

σ1

σ2

σ1

σ1,s

σ1

σ1,s

σ1

σ1 σ1

σ1p

p

p

p

p

p p

p

(a) Partial-observation supervisor (not physically admissible)

σ1,a σ2

σ2,s

p

p

p

p

p

p

p

σ1

σ1,s

σ1

σ1,s

σ1

σ1,s

σ1

(b) Partial-observation supervisor (physically admissible)

Fig. 6: Partial-observation supervisors based on G2 and G̃2 in
Figure 4 with Ra(q2) = Rs(q2) = 1; symbol p on edges represents
the supervisor’s decision to disable events.

Next, let us consider both actuator attacks and sensor attacks

AUTHOR et al.: TITLE 7

by letting Ra(q2) = 1, Rs(q2) = 1 for G̃2 in Figure 4b. In this
case, consider a partial-observation supervisor in Figure 6a.
First, this supervisor must disable σ1 and σ1,s at q0 of G̃2, as
allowing either event would lead G̃2 to q1, from which a single
attack (σ1,a) would drive G̃2 to the unsafe state q2, which
would not be acceptable since Ra(q2) = 1. These scenarios
would allow σ1σ1,a or σ1,sσ1,a to occur, both of which would
lead G̃2 to unsafe state q2. Thus, at q0 of G̃2, only σ1,a may
occur. This situation indicates that the supervisor sometimes
enforces a seemingly counterintuitive strategy of allowing an
attack early on (in this case, allowing σ1,a to occur at q0 of
G̃2)—as long as it does not lead immediately to an unsafe
state (in this case, q2)—setting a sort of honey trap, so that
the attacker will use up its allotted attack resources (in this
case, captured by Ra(q2) = 1) while the supervisor is then
able to later on prevent entry into an unsafe state.

If σ1,a occurs at q0 of G̃2, the supervisor again disables σ1

and σ1,s to prevent the plant from reaching unsafe state q2. At
this point, possible events at q1 of G̃2 are σ2 and σ2,s. Since
σ2,s is unobservable and σ1,a and σ1,aσ2,s look the same to
the supervisor, σ1 after σ1,aσ2,s needs to be disabled because
σ1 is disabled after σ1,a (as we just reasoned).

Now, recall that the supervisor only needs to make dis-
ablement decisions for strings which contain no more than
the prescribed number of attacks, namely no more than one
actuator attack and one sensor attack due to Ra(q2) =
Rs(q2) = 1 in this case. Consequently, the supervisor can
enable σ1,s after σ1,aσ2, because the supervisor need not
consider that σ1,s can occur after σ1,aσ2. However, once σ1,s

after σ1,aσ2 is enabled, the supervisor in Figure 6a would
need to disable σ1 after σ1,aσ2, because unobservable event
σ1,s can now occur after σ1,aσ2, but strings σ1,aσ2 and
σ1,aσ2σ1,s look the same to the supervisor; hence σ1 needs
to be disabled after σ1,aσ2σ1,s to prevent G̃2 from reaching
unsafe state q2. Since the supervisor does not take into account
any further attacks after string σ1,aσ2σ1,s and after strings in
σ1,aσ2σ1,sσ2σ1(σ2σ1)

∗, this means that after σ1,aσ2σ1,s and
after strings in σ1,aσ2σ1,sσ2σ1(σ2σ1)

∗, the supervisor need
only to disable σ1, which corresponds to disabling σ1 at q1 in
G̃2, to prevent G̃2 from reaching q2.

It can be seen that the supervisor in Figure 6a is again not
physically admissible, since it disables σ1 and enables σ1,s

after string σ1,aσ2, thereby violating condition (8) for ω =
σ1,aσ2 and σ = σ1. We can, however, construct a physically-
admissible (partial-observation) supervisor in Figure 6b based
on Figure 6a by further disabling σ1,s after σ1,aσ2.

Having introduced and motivated the need to address phys-
ical admissibility, we are now ready to formulate our problem
of designing supervisors with prescribed resilience to protect
the plant under indefinite actuator and sensor attacks.

Problem 1 (Resilient Supervisory Control against Indef-
inite Attacks Problem). Given an unreliable plant G̃ =
(Q, Σ̃, δ̃, q0) as in (4), a subset of unsafe states Qu ⊆ Q, and
safety requirements Ra and Rs, with the attack-compromised
language Lcom(G̃,Qu, Ra, Rs) in (6), find a feasible partial-
observation supervisor V : P (L(G̃)) → 2Σ̃c (P : Σ̃∗ → Σ̃∗

o)

such that
C1. V is physically admissible; and
C2. Specification LK in (7) is satisfied with respect to Lcom :

L(V/G̃) ∩ Lcom ⊆ LK

namely every string in Lcom subject to the safety re-
quirements Ra and Rs should be made to satisfy the
specification; and

C3. V is a minimally-restrictive supervisor that satisfies C1
and C2, i.e., there does not exist another supervisor V ′ :

P (L(G̃)) → 2Σ̃c such that C1 and C2 are satisfied and
L(V ′/G̃) ⊃ L(V/G̃).

We emphasize that the language generated by G̃ under con-
trol of V , namely L(V/G̃), is only required to guarantee that
event sequences which do not contain more than the allowed
number of sensor or actuator attacks prescribed by the safety
requirements resides in our specification LK . This is because
the nature of indefinite attacks is that our controlled language,
namely L(V/G̃), could very well result in event sequences
that reaches unsafe states if an arbitrary number of actuator
attacks occurs. This is not a shortcoming of our methodology,
but rather is an essential part of the characteristics of indefinite
attacks. That is, in theory, if an attacker could keep attacking
the target system, then the system cannot be protected against
such an extremely powerful attacker. This is the main reason
why we have focused on synthesizing a supervisor which
provides prescribed resilience against indefinite attacks.

IV. SYNTHESIS OF A RESILIENT SUPERVISOR

In this section, we develop a novel approach to solve
Problem 1. The procedure of this approach is summarized in
Figure 7 as a flowchart, which shows the interconnections and
dependencies among different concepts/components. We first
construct the unreliable plant G̃ as in Section III-A. Next,
we construct attack automata Ha and Hs based on the sets of
attack events (Σa and Σs) and the safety requirements (Ra and
Rs), which act as trackers of the numbers of actuator attacks
and sensor attacks. Then, to encode the trackers Ha and Hs

to G̃, we construct intermediate automata H = Ha ∥ Hs and
Ĝ = G̃ ∥ H . Next, we construct an attack-compromised plant
Gcom and a specification automaton K by preprocessing Ĝ, to
represent the attack-compromised language Lcom in (6) and
the specification language LK in (7) respectively. Then, we
compute an intermediate (maximally observable and control-
lable) partial-observation supervisor Vcom for Gcom (which
need not be physically admissible). Finally, we construct based
on Vcom a physically-admissible partial observation supervisor
V for the unreliable plant G̃. Our main result (Theorem 1 in
Section IV-D below) asserts that the resulting V is a solution
to Problem 1.

A. Attack-Compromised Plant
Based on the unreliable plant G̃ and safety requirements Ra

and Rs, our first step is to construct an attack-compromised
plant, denoted by Gcom . The main idea to construct Gcom is
to track the numbers of actuator and sensor attacks of strings

8 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

Fig. 7: Flowchart of the synthesis procedure (arrows represent dependencies between concepts/components)

in G̃ according to the given safety requirements. For this, we
introduce the following concepts.

Definition 6 (Sensor Attack Automaton). Consider the unreli-
able plant G̃ = (Q,Σ∪Σa∪Σs, δ̃, q0), a subset of unsafe states
Qu ⊆ Q, and a sensor safety requirement Rs : Qu → N0. A
sensor attack automaton is a four-tuple

Hs = (Xs,Σ ∪ Σs, ξs, x0,s) (9)

where
• Xs = {xi,s : i ∈ [0, rs]}, where rs = maxqu∈Qu

Rs(qu)
• ξs : Xs × (Σ ∪ Σs) → Xs is given by

ξs(xi,s, σ) =


xi,s if σ ∈ Σ ∧ 0 ≤ i ≤ rs

xi+1,s if σ ∈ Σs ∧ rs ≥ 1

∧ 0 ≤ i ≤ rs − 1

undefined if σ ∈ Σs ∧ i = rs.

In words, a sensor attack automaton Hs (Definition 6)
consists of rs + 1 states which indicate the number of sensor
attacks Hs tracks. The transitions labeled by sensor attack
events increment the number of sensor attacks, and the current
state of Hs moves to its next state. At every state, self-
loops of original events are defined, so that original events
do not increment the tracking number of attacks. Once Hs

reaches its final state xrs,s, meaning that the numbers of sensor
attacks reach the maximum of the safety requirement Rs, the
automaton Hs no longer tracks attacks. By this construction,
the number of sensor attack events in every string generated
by Hs is less than or equal to rs.

In a similar way, we construct another automaton to track
the number of actuator attacks (cf. [26]):

Ha = (Xa,Σ ∪ Σa, ξa, x0,a). (10)

The generated languages of Ha and Hs are, by construction,

L(Ha) = {ωa ∈ (Σ ∪ Σa)
∗ : |Pa(ωa)| ≤ ra}, (11)

L(Hs) = {ωs ∈ (Σ ∪ Σs)
∗ : |Ps(ωs)| ≤ rs}, (12)

respectively. That is, the numbers of actuator/sensor events in
strings generated by attack automata are less than or equal to
the maximum values of the respective safety requirements.

Now to simultaneously consider actuator and sensor attacks,
we construct the following attack automaton by the parallel
composition of Ha in (10) and Hs in (9), i.e.,

H = Ha ∥ Hs. (13)

Remark 2. By setting rs = 0 in Definition 6, we consider
situations where there are only indefinite actuator attacks and
no sensor attacks. Thus, our approach covers the previous work
in [26] as a special case. Symmetrically, by setting ra = 0,
we consider situations where there are only indefinite sensor
attacks, which has not been studied in the literature. Moreover,
if ra = rs = 0, then the setup is back to the conventional
supervisory control. In general, we consider situations where
both indefinite actuator and sensor attacks exist, which is
studied for the first time in the literature.

Example 4. Let us revisit the plant in Example 1. Since ra =
maxqu∈Qu

Ra(qu) = 2 and rs = maxqu∈Qu
Rs(qu) = 1, the

actuator attack automaton Ha and the sensor attack automaton
Hs consist of three states and two states, are depicted in
Figure 8a and Figure 8b, respectively. Figure 8c illustrates
the attack automaton H = Ha ∥ Hs, used to track the number
of attacks up to two actuator attacks and one sensor attack.

Using the attack automaton H in (13) and the unreliable
plant G̃ in (4), our next step is to construct an augmented
plant as follows:

Ĝ = (Q̂, Σ̃, δ̂, q̂0) = G̃ ∥ H (14)

where Q̂ ⊆ Q × Xa × Xs is the set of triples of states
from G̃, Ha, and Hs, Σ̃ is the same event set as that of
G̃, δ̂ : Q̂ × Σ̃ → Q̂ is the transition function (based on
the rules of parallel composition), and q̂0 = (q0, x0,a, x0,s)
is the initial state. The numbers of actuator attacks and sensor
attacks that have occurred are embedded respectively as the

AUTHOR et al.: TITLE 9

x0,a x1,a x2,a
σ1,a, σ3,a σ1,a, σ3,a

Σ Σ Σ

(a) Actuator attack automaton Ha

x0,s x1,s
σ1,s, σ2,s, σ3,s

Σ Σ

(b) Sensor attack automaton
Hs

x0,a, x0,s x1,a, x0,s x2,a, x0,s

x0,a, x1,s x1,a, x1,s x2,a, x1,s

σ1,a, σ3,a σ1,a, σ3,a

σ1,a, σ3,a σ1,a, σ3,a

σ1,s, σ2,s, σ3,s σ1,s, σ2,s, σ3,s σ1,s, σ2,s, σ3,s

Σ Σ Σ

Σ Σ Σ

(c) Attack automaton H

Fig. 8: Attack automata for Example 1 with ra = 2 and rs = 1

second and third elements of each state triple in Q̂. Here,
since Ha and Hs track up to ra and rs attacks which are the
maximum values of Ra and Rs, respectively, the augmented
plant Ĝ may contain an unsafe state (qu, xi,a, xj,s) where
i > Ra(qu) or j > Rs(qu). Such a state corresponds to
a trajectory in G̃ which reaches an unsafe state qu from
the initial state and contains more actuator and sensor attack
events than the respective safety requirements on this state
qu. Since we only need to consider unsafe state qu ∈ Qu in
G̃ which are reachable via strings containing at most Ra(qu)
actuator attacks and at most Rs(qu) sensor attacks, any states
(qu, xi,a, xj,s) in Ĝ where i > Ra(qu) or j > Rs(qu) are
unnecessary and thus should be removed.

Example 5. Consider the unreliable plant G̃ in Figure 2 and
Ha, Hs in Figure 8. By (14), we obtain the augmented plant
Ĝ in Figure 9. Three (dashed, grey) unsafe states labeled A =
(q4, x0,a, x1,s), B = (q4, x1,a, x1,s), and C = (q4, x2,a, x1,s)
exceed the sensor safety requirement Rs(q4) = 0. Thus, they
do not need to be considered and should be removed. The
state triples other than A, B, and C are omitted in Figure 9
to avoid cluttering.

Removing the superfluous states (if there are any) from the
augmented plant Ĝ, we derive an automaton whose states
are all within the required safety requirements on actuator
and sensor attacks for individual unsafe states. We call this
automaton “attack-compromised plant”.

Definition 7 (Attack-Compromised Plant). Given an aug-
mented plant Ĝ in (14), an attack-compromised plant is a
four-tuple

Gcom = (Qcom , Σ̃, δcom , q̂0) (15)

where

Qcom = Q̂ \QF
com ,where

QF
com = {(q, xi,a, xj,s) ∈ Q̂ :

q ∈ Qu ∧ (i > Ra(q) ∨ j > Rs(q))}
δcom = {(qcom , σ, q′com) ∈ δ̂ :

σ ∈ Σ̃ ∧ qcom ∈ Qcom ∧ q′com ∈ Qcom}.

The subset QF
com in Definition 7 consists of unsafe states

in Ĝ which exceed their individual safety requirement Ra or
Rs. In other words, to construct Gcom , we remove from Ĝ all
states in QF

com and transitions from and to states in QF
com .

Example 6. Let us inspect Figure 9 again. By following
Definition 7, we obtain the attack-compromised plant Gcom

by removing from the augmented plant Ĝ in Figure 9 dashed
grey states A, B, and C and dashed transitions associated to
A, B, and C, since these three states exceed the sensor safety
requirement Rs(q4) = 0.

Remark 3. If the safety requirements Ra and Rs are the same
for all unsafe states (i.e., Ra(qu) = i and Rs(qu) = j for all
qu ∈ Qu where i, j ∈ N0), then Gcom is the same as Ĝ, since
QF

com in Definition 7 is empty in this special case. Namely,
there are no states to be removed from Ĝ in order to form
Gcom .

Now, we assert that the generated language of attack-
compromised plant is equal to the attack-compromised lan-
guage, i.e., Gcom generates Lcom in (6). The significance of
this result is that, for any given safety requirement, it pro-
vides a constructive way to represent the attack-compromised
language by a finite-state automaton.

Proposition 1. Given a plant G = (Q,Σ, δ, q0), a subset
of unsafe states Qu ⊆ Q, and safety requirements Ra and
Rs, with the unreliable plant G̃ formed from (4), the attack-
compromised language Lcom = Lcom(G̃,Qu, Ra, Rs) formed
from (6), and the attack-compromised plant Gcom formed from
(15), it holds that L(Gcom) = Lcom .

Proof. Let P̃a : Σ̃∗ → (Σ ∪ Σa)
∗ and P̃s : Σ̃∗ → (Σ ∪ Σs)

∗

be natural projections. Since H is the parallel composition of
Ha and Hs,

L(H) = P̃−1
a (L(Ha)) ∩ P̃−1

s (L(Hs)). (16)

Let ra = maxqu∈Qu
Ra(qu) and rs = maxqu∈Qu

Rs(qu).
Here, from L(Ha) in (11) and L(Hs) in (12),

P̃−1
a (L(Ha)) = {ω ∈ Σ̃∗ : |Pa(ω)| ≤ ra}

P̃−1
s (L(Hs)) = {ω ∈ Σ̃∗ : |Ps(ω)| ≤ rs}.

Thus, from (16), we have that

L(H) = {ω ∈ Σ̃∗ : |Pa(ω)| ≤ ra ∧ |Ps(ω)| ≤ rs}

Since the set of all events in G̃ is Σ̃,

L(G̃ ∥ H) = L(G̃) ∩ L(H).

Hence,

L(Ĝ) = L(G̃ ∥ H)

10 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

σ1

σ3

σ4

σ3

σ3

σ2σ1σ2

σ1

σ1,a

σ3,a

σ3,a

σ1,a

σ3,a

σ1,a

σ3

σ4

σ3

σ3

σ2σ1σ2

σ1

D F

σ3,a

σ3,a

σ1,a

σ1,a

σ3,a

σ3

σ4

σ3

σ3

σ2σ1σ2

σ1

A

σ1,s

σ1,s
σ3,s

σ3,s

σ3,s

σ2,s

σ2,s

σ3

σ4

σ3

σ3σ2σ1σ2

σ1

σ1,s

B

σ1,s

σ3,a

σ3,a

σ3,a

σ1,a

σ3,s

σ3,s

σ3,s

σ2,s

σ2,s

σ3

σ4

σ3

σ3σ2σ1σ2

σ1

σ1,s

σ1,a

C E

σ1,s

σ3,a

σ3,a
σ1,a

σ3,a

σ3,s

σ3,s σ3,s

σ2,s

σ2,s

σ3

σ4

σ3

σ3

σ2σ1σ2

σ1

σ1,s

σ1,a

Fig. 9: Example augmented plant Ĝ; dashed grey (unsafe) states labeled A = (q4, x0,a, x1,s), B = (q4, x1,a, x1,s), and C = (q4, x2,a, x1,s)

and dashed transitions are to be removed from Ĝ to form Gcom due to the sensor safety requirement Rs(q4) = 0; other grey states labeled
D = (q4, x2,a, x0,s), E = (q5, x2,a, x1,s), and F = (q5, x2,a, x0,s) are referred in Example 9 and Example 10.

= {ω ∈ L(G̃) : |Pa(ω)| ≤ ra ∧ |Ps(ω)| ≤ rs}. (17)

This indicates that the number of attack events in strings
yielded by the augmented plant is smaller than or equal to
the maximum values of safety requirements.

Let i ∈ [0, ra] and j ∈ [0, rs]. From QF
com in Definition 7,

the state set of the attack-compromised plant Qcom is given
by

Qcom = {(q, xi,a, xj,s) ∈ Q̂ :

q ∈ Qu ⇒ i ≤ Ra(q) ∧ j ≤ Rs(q)}. (18)

That is, the set of states of an attack-compromised plant only
contains unsafe states which are reachable via a number of
attacks not greater than Ra and Rs.

By the construction of Ĝ in which the indices of states
indicate the number of attacks, for all (q, xi,a, xj,s) ∈ Q̂ and
ω ∈ L(Ĝ),

δ̂(q̂0, ω) = (q, xi,a, xj,s) ⇔
δ̃(q0, ω) = q ∧ |Pa(ω)| = i ∧ |Ps(ω)| = j. (19)

Condition (19) essentially states that the state labels in Q̂
correspond to the state labels in G̃ and the number of attacks.
Hence, from (18) and (19), for all ω ∈ L(Ĝ),

δ̂(q̂0, ω) ∈ Qcom ⇔(
(∀t ∈ ω)(∀qu ∈ Qu) δ̃(q0, t) = qu ⇒

|Pa(t)| ≤ Ra(qu) ∧ |Ps(t)| ≤ Rs(qu)
)

(20)

Condition (20) means that if string ω in L(Ĝ) leads to a state
in Qcom which passes or reaches an unsafe state qu, then the
number of attacked events in ω should be less than or equal
to Ra(qu) and Rs(qu).

Therefore, from (17) and (20),

L(Gcom) = {ω ∈ L(G̃) : |Pa(ω)| ≤ ra ∧ |Ps(ω)| ≤ rs

∧
(
(∀t ∈ ω)(∀qu ∈ Qu) δ̃(q0, t) = qu ⇒
|Pa(t)| ≤ Ra(qu) ∧ |Ps(t)| ≤ Rs(qu)

)
}

= Lcom

Here, we note that Proposition 1 implies that Lcom is prefix-
closed, since L(Gcom) is prefix-closed by definition. We will
exploit in Section IV-D this fact to show that our synthesis
method produces a solution to Problem 1.

B. Synthesis via Partial-Observation Supervisory Control
Now that we have defined the attack-compromised plant

Gcom , we can construct a specification automaton from Gcom

by removing those state triples of Gcom whose first elements
are unsafe states in Qu.

Definition 8 (Specification Automaton). Given an attack-
compromised plant Gcom = (Qcom , Σ̃, δcom , q̂0) in (15), we
construct a specification automaton K by removing unsafe
states from Gcom , i.e.,

K = (QK , Σ̃, δK , q̂0) (21)

where

QK = {(q, ,) ∈ Qcom : q /∈ Qu} (22)
δK = {(qcom , σ, q′com) ∈ δcom :

qcom ∈ QK ∧ q′com ∈ QK ∧ σ ∈ Σ̃}.
Example 7. Figure 10 depicts the specification automaton K
derived from the attack-compromised plant Gcom in Figure 9
by removing all grey unsafe states.

AUTHOR et al.: TITLE 11

σ1

σ3

σ4

σ3
σ1

σ1,a

σ3,a

σ1,a

σ3

σ4

σ3
σ1

σ3,a

σ3,a

σ1,a

σ3

σ4

σ3
σ1

σ1,s
σ3,s

σ3,s

σ3

σ4

σ3

σ1

σ1,s

σ3,a

σ3,s

σ3,s

σ3,a

σ3,a

σ3

σ4

σ3

σ1

σ1,s

σ1,a

σ3,a

σ3,s

σ3,s

σ3,a

σ3

σ4

σ3

σ1

σ1,s

σ1,a

Fig. 10: Example specification automaton K

Our next result confirms that the specification automaton K
in (21) generates the specification language LK in (7).

Proposition 2. Given a plant G = (Q,Σ, δ, q0), a subset
of unsafe states Qu ⊆ Q, and safety requirements Ra and
Rs, with unreliable plant G̃ and attack-compromised language
Lcom = Lcom(G̃,Qu, Ra, Rs) formed as in (4) and (6),
respectively, consider the specification automaton K in (21)
and the specification language LK in (7). It holds that L(K) =
LK .

Proof. For convenience, let us define a mapping function f :
Qcom → Q by f((q, ,)) = q. Here, the set of states QK can
be written as

QK = {qcom ∈ Qcom : f(qcom) /∈ Qu}.

By the construction of K, the generated language L(K) is
given by

L(K) = {ω ∈ L(Gcom) : (∀t ∈ ω) f(δcom(q̂0, t)) /∈ Qu}.
(23)

That is, we remove strings from L(Gcom) which pass or reach
any unsafe states. By the construction of Gcom , we know that
for all ω ∈ L(Gcom),

f(δcom(q̂0, ω)) = δ̃(q0, ω). (24)

Namely, the unreliable plant G̃ reaches a state q ∈ Q via
string ω that leads the attack-compromised plant Gcom to state
(q, ,). Hence, from (23) and (24), we have that

L(K) = {ω ∈ L(Gcom) : (∀t ∈ ω) δ̃(q0, t) /∈ Qu}.

Since L(Gcom) = Lcom by Proposition 1,

L(K) = {ω ∈ Lcom : (∀t ∈ ω) δ̃(q0, t) /∈ Qu}
= LK

Now that we have constructed a specification automaton K
in (21) which corresponds to LK in (7), and also an attack-
compromised plant Gcom in (15) which corresponds to Lcom

in (6), it is natural to proceed to supervisory synthesis. Recall
that our goal is to find a feasible partial-observation supervisor
V : P (L(G̃)) → 2Σ̃c (where P : Σ̃∗ → Σ̃∗

o) which satisfies
conditions C1–C3 in Problem 1. To find such V , we first

compute based on plant Gcom and specification K, a feasible
partial-observation supervisor

Vcom : P (L(Gcom)) → 2Σ̃c (25)

(if one exists) with a standard partial-observation supervisory
synthesis procedure (using, for example, the algorithm in [29]
or the one in [30]), such that L(Vcom/Gcom) ⊆ L(K) and
L(Vcom/Gcom) is maximally controllable and observable with
respect to L(Gcom), the set of controllable events Σ̃c, and the
natural projection P : Σ̃∗ → Σ̃∗

o.
We should note, however, that a feasible partial-observation

supervisor Vcom thus computed cannot be directly used to
control G̃ as is, because the domain of Vcom is P (L(Gcom))
instead of P (L(G̃)) and, more importantly, there may exist a
pair (σ, σs) ∈ Σc × Σc,s such that Vcom yields inconsistent
control decisions, that is, Vcom may not be physically admis-
sible. This point is illustrated in the example below.

σ1,s

σ1,a

σ3,s

σ3,a

σ3,a

σ3,s

σ4

σ4

σ3,a

σ3,s

σ4

σ3,a

σ3,a

σ1

σ4

σ3,a

σ1

σ3

σ3

σ3

σ1

σ3

σ3

σ1

σ3

σ3

σ3

σ3

σ3

σ3 σ3

p

p

p p

p

p

p

p

p

p

p

p

p

p p

Fig. 11: Automaton representation of an example supervisor Vcom ;
symbol p represents the supervisor’s decision to disable events.

Example 8. Figure 11 displays the automaton representation
of a feasible partial-observation supervisor Vcom for the attack-
compromised plant Gcom in Figure 9 and the specification
automaton K in Figure 10 such that L(Vcom/Gcom) ⊆ L(K)
and L(Vcom/Gcom) is maximally controllable and observable
with respect to L(Gcom), Σ̃c, and P : Σ̃∗ → Σ̃∗

o.
It can be verified that Vcom in Figure 11 is not physically

admissible, because it disables σ3 after σ1,a, σ1,aσ3,a, and
σ1,aσ3,aσ4 but does not disable σ3,s after these strings. In ad-
dition, it disables σ1 after ε but not after σ1,s. (The reason why
these inconsistencies occur will be explained in detail below
in Example 9.) Consequently, Vcom illustrated in Figure 11
fails to satisfy condition C1 in Problem 1 and therefore is not
a valid solution to Problem 1.

Motivated by the need to address the issue of possible
physical inadmissibility of Vcom , in the next subsection we
will further derive from Vcom a feasible partial-observation
supervisor V which satisfy all conditions C1–C3 in Problem 1.

12 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

C. Physically Admissible Supervisor

As the last but key step of finding a solution to Problem 1,
we derive a feasible partial-observation supervisor V from
Vcom which not only can control G̃ but also guarantees
physical admissibility as defined in (8):

(∀ω ∈ L(G̃))V (P (ω)) =
Vcom(P (ω))

∪ {σs ∈ Σc,s : σ ∈ Vcom(P (ω))}
∪ {σ ∈ Σc : σs ∈ Vcom(P (ω))}

if ω ∈ Lcom

∅ if ω ∈ L(G̃) \ Lcom

(26)

That is, the supervisor V is constructed by disabling:
D1. All controllable events disabled by Vcom ; and
D2. The (controllable) sensor attack event σs ∈ Σc,s if Vcom

disables the controllable event σ ∈ Σc in the original
plant corresponding to σs; and

D3. The controllable event σ ∈ Σc in the original plant if
Vcom disables the (controllable) sensor attack event σs ∈
Σc,s corresponding to σ.

This construction (the disablement rules D1–D3 above) en-
sures that V is feasible and satisfies (8). Moreover, the
supervisor V does not disable any events for strings not in
Lcom , i.e., when Ra and Rs have been exceeded. We also
note that the construction in (26) does not produce an empty
V from a nonempty Vcom .

Example 9. Let us inspect the feasible partial-observation
supervisor Vcom illustrated in Figure 11. As pointed out in
Example 8, this example Vcom is not physically admissible.

Based on the attack-compromised plant Gcom in Figure 9
(after dashed grey states A, B, C and dashed transitions in
Figure 9 are removed), the behavior of the supervisor Vcom

can be described as follows.
First, Vcom disables σ1 after ε, since the unsafe state

(q4, x2,a, x0,s), labeled D, in Figure 9 could otherwise be
reached uncontrollably by σ1σ3,aσ1,a (since we recall that
actuator attack events are uncontrollable). On the other hand,
σ1,s after ε is enabled, since unsafe state (q4, x2,a, x1,s) (state
C in Figure 9) does not exist in Gcom due to Rs(q4) = 0, and
thus Vcom does not take that unsafe state into account after
string σ1,s occurs. Namely, string σ1,sσ3,aσ1,a (which goes to
unsafe state C in Figure 9) is not in L(Gcom).

Next, σ3 is disabled after string σ1,s and σ1,sσ3,a, since
otherwise the unsafe state (q5, x2,a, x1,s), labeled E in Fig-
ure 9, could be reached uncontrollably by σ1,sσ3σ3,aσ3,a and
σ1,sσ3,aσ3σ3,a. Event σ3 is also disabled after σ1,sσ3,aσ3,a,
to prevent Gcom in Figure 9 from reaching unsafe state
(q5, x2,a, x1,s) (state E in Figure 9). Since σ4 is unobservable,
σ3 is further disabled after σ1,sσ3,aσ4, σ1,sσ3,aσ4σ3,a, and
σ1,sσ3,aσ4σ3,aσ4.

Also, Vcom disables σ1 after σ1,aσ3,a to prevent Gcom in
Figure 9 from reaching unsafe state (q4, x2,a, x0,s) (state D in
Figure 9). As a result, since σ3,s is unobservable, σ1 is also
disabled after σ1,aσ3,aσ3,s. Note that Vcom need not disable
σ1,s after σ1,aσ3,a and σ1,aσ3,aσ4σ3,s since (q4, x2,a, x1,s)

(state C in Figure 9) does not exist in Gcom and thus
σ1,aσ3,aσ1,s and σ1,aσ3,aσ4σ3,sσ1,s are not in L(Gcom).

Furthermore, Vcom disables σ3 after σ1,aσ3,aσ3,s to
prevent Gcom in Figure 8 from reaching unsafe state
(q5, x2,a, x1,s) (state E in Figure 9). As a result,
since σ3,s and σ4 are unobservable, σ3 is also dis-
abled after strings σ1,aσ3,a, σ1,aσ3,aσ4, σ1,aσ3,aσ4σ3,s,
σ1,aσ3,aσ4σ3,sσ4, σ1,aσ3,sσ4σ3,a, and σ1,aσ3,sσ4σ3,aσ4.

It can also be seen that σ3 is disabled after string σ1,a.
This is because the unsafe state (q4, x2,a, x0,s) (state D in
Figure 9) would be uncontrollably reachable by σ1,aσ3σ1,a

otherwise. As a result, since σ3,s and σ4 are unobservable, σ3

is further disabled after σ1,aσ3,s and σ1,aσ3,sσ4.
Consequently, Vcom in Figure 11 is not physically admissi-

ble, since it disables σ3 after σ1,a, σ1,aσ3,a, and σ1,aσ3,aσ4

but does not disable σ3,s after those strings, and also disables
σ1 after ε but not σ1,s.

Finally, based on the Vcom illustrated in Figure 11, we
construct from (26) a feasible partial-observation supervisor
V : P (L(G̃)) → 2Σ̃c which is physically admissible, by
disabling σ1,s after ε and disabling σ3,s after σ1,a, σ1,aσ3,a

and σ1,aσ3,aσ4. As a result, we obtain the feasible physically-

σ1,a σ3,a σ4

σ1

σ1,s σ3,s

σ3

σ1

σ3

σ3,s

σ3

σ3,s

p

p

p

p pp p p p

Fig. 12: Automaton representation of an example supervisor V
derived from Vcom in Figure 11 by (26); symbol p represents the
supervisor’s decision to disable events.

admissible partial-observation supervisor V illustrated in Fig-
ure 12.

Since Vcom in Figure 11 is minimally restrictive, and there
is no other way of choosing which events to additionally
disable for physical admissibility, V in Figure 12 is a feasible
minimally-restrictive physically-admissible partial-observation
supervisor. That is, V in Figure 12 satisfies all the conditions
C1–C3 in Problem 1. We will prove this fact in Section IV-D.

Recall that Vcom is a supervisor that guarantees that
L(Vcom/Gcom) ⊆ L(K) and L(Vcom/Gcom) is maximally
controllable and observable. The fact that Vcom is maximal and
not necessarily maximum underscores that, in general, there
may exist multiple possible supervisors that achieve (incom-
parable) maximal controllable and observable sublanguages of
L(K). In our next example, we have exactly that situation.

Example 10. While only disabling additional sensor attack
events (namely, the disablement rule D2, which corresponds
to the third line of (26)) is required to derive physically
admissible V in Figure 12 from Vcom in Figure 11, there ex-
ists another feasible minimally-restrictive partial-observation
supervisor, call it V ′

com : P (L(Gcom)) → 2Σ̃c , such that
L(V ′

com/Gcom) ⊆ L(K) for Gcom in Figure 9 and K in
Figure 10, which is incomparable to Vcom in Figure 11 and
requires disabling additional controllable events in the original

AUTHOR et al.: TITLE 13

plant (namely the disablement rule D3 after (26)) to construct
V as a solution to Problem 1. Figure 13 illustrates such V ′

com .

σ1,a σ3,a

σ3

σ4

σ3σ1,s

σ3,a

σ3,a
σ4

σ3,a

σ4

σ1

σ1,s σ4

σ1 σ3

σ3,s

σ1

σ3,s

σ3

σ3,s

σ3,s

σ3

σ3,s

σ3

σ3

σ3 σ3

σ3

σ3

σ1σ1

σ3

σ3,s

p p

p

p

p

p p p p

p

p

p

p p

p p

pp

p p

Fig. 13: Automaton representation of an example supervisor V ′
com ;

symbol p represents the supervisor’s decision to disable events.

The main difference between V ′
com in Figure 13 and Vcom

in Figure 11 is that V ′
com disables σ3,s and enables σ3 after

σ1,aσ3,a while Vcom does the opposite. This comes from
different options of how to prevent Gcom in Figure 9 from
reaching unsafe state (q5, x2,a, x1,s) (state E in Figure 9). The
supervisor V ′

com in Figure 13 achieves this by disabling σ3,s

after σ1,aσ3,a and σ1,aσ3,aσ3, while Vcom in Figure 11 does
so by disabling σ3 after σ1,aσ3,a and σ1,aσ3,aσ3,s.

We focus now on V ′
com and examine its disablement de-

cisions. First, since σ3,s is disabled after σ1,aσ3,a and σ4 is
unobservable, event σ3,s is also disabled after σ1,aσ3,aσ4.

Next, V ′
com disables σ3 and σ3,s after σ1,aσ3,aσ3 to prevent

Gcom in Figure 9 from reaching unsafe states (q5, x2,a, x0,s)
(state F in Figure 9) and (q5, x2,a, x1,s) (state E in Figure 9),
respectively. Since σ4 is unobservable, σ3 is also disabled after
σ1,aσ3,aσ4σ3, and σ1,aσ3,aσ4σ3σ4, and σ3,s is disabled after
σ1,aσ3,aσ4σ3 and σ1,aσ3,aσ4σ3σ4.

It can also be seen that σ3,s must be disabled after string
σ1,a, using the following argument. We have that σ3 is enabled
after σ1,aσ3,a. We also have that σ1,aσ3,sσ3,aσ3 leads Gcom in
Figure 9 to unsafe state (q5, x2,a, x1,s) (state E in Figure 9).
Since σ3,s is unobservable and thus σ1,aσ3,a and σ1,aσ3,sσ3,a

look the same, if V ′
com were to disable σ3 after σ1,aσ3,sσ3,a,

V ′
com would no longer be feasible. Consequently, V ′

com must
disable σ3,s after σ1,a.

Next, σ1 after ε, σ3 after σ1,a, σ3 after σ1,s, σ3 after
σ1,sσ3,a are disabled, since unsafe state (q4, x2,a, x0,s) in
Gcom (state D in Figure 9) is uncontrollably reachable by
σ1σ3,aσ1,a; unsafe state (q5, x2,a, x0,s) (state F in Figure 9)
is uncontrollably reachable by σ1,aσ3σ1,a; and unsafe state
(q5, x2,a, x1,s) (state E in Figure 9) is uncontrollably reach-
able by σ1,sσ3σ3,aσ3,a and σ1,sσ3,aσ3σ3,a.

Note that σ1,s after ε need not be disabled for the same rea-
son as explained in Example 9, i.e., unsafe state (q4, x2,a, x1,s)
(state C in Figure 9) does not exist in Gcom due to Rs(q4) = 0
and thus string σ1,sσ3,aσ1,a is not in L(Gcom).

Moreover, σ3 after σ1,sσ3,aσ3,a is disabled to prevent
Gcom from reaching unsafe state (q5, x2,a, x1,s) (state E in
Figure 9). Since σ4 is unobservable, σ3 is also disabled after
σ1,sσ3,aσ4, σ1,sσ3,aσ4σ3,a, and σ1,sσ3,aσ4σ3,aσ4.

In addition, σ1 is disabled after σ1,aσ3,a and σ1,aσ3,aσ4σ3

to prevent Gcom from reaching unsafe state (q4, x2,a, x0,s)
(state D in Figure 9). Since σ4 is unobservable, this results in
disabling σ1 after σ1,aσ3,aσ3.

Note that V ′
com need not disable σ1,s after σ1,aσ3,a and after

σ1,aσ3,aσ4σ3 since (q4, x2,a, x1,s) (state C in Figure 9) does
not exist in Gcom and thus σ1,aσ3,aσ1,s and σ1,aσ3,aσ4σ3σ1,s

are not in L(Gcom). Since σ4 is unobservable and hence
σ1,aσ3,aσ3 and σ1,aσ3,aσ4σ3 look the same, σ1,s is enabled
after σ1,aσ3,aσ3.

Consequently, the feasible partial-observation supervisor
V ′
com illustrated in Figure 13 is not physically admissible,

since σ3 is enabled but σ3,s is disabled after σ1,aσ3,a and
σ1,aσ3,aσ4, and also σ1,s is enabled but σ1 is disabled after ε.
Therefore, by (26) (in particular by the disablement rules D2
and D3 after (26)), we obtain the same3 feasible physically-
admissible partial-observation supervisor in Figure 12 as Ex-
ample 9.

From Example 9 and Example 10 above, it is justified that
in (26) both {σs ∈ Σc,s : σ ∈ Vcom(P (ω))} and {σ ∈ Σc :
σs ∈ Vcom(P (ω))} need to be included.

D. Main Result

As the main result of this paper, we prove that our
automaton-based procedure presented in Sections IV-A to IV-
C can produce a solution to Problem 1. This result confirms
that we can construct a feasible partial-observation supervisor
which provides a prescribed resilience for a given plant against
both indefinite actuator and indefinite sensor attacks. This is
an essential generalization of [26] which considers only the
full-observation case.

Theorem 1. Given a plant G = (Q,Σ, δ, q0), a subset of
unsafe states Qu ⊆ Q, and safety requirements Ra and Rs,
consider the unreliable plant G̃ in (4), the attack-compromised
plant Gcom in (15), the specification automaton K in (21),
the natural projection P : Σ̃∗ → Σ̃∗

o, the attack-compromised
language Lcom in (6), and the specification language LK

in (7). Let Vcom : P (L(Gcom)) → 2Σ̃c be a feasible
partial-observation supervisor such that L(Vcom/Gcom) ̸= ∅,
L(Vcom/Gcom) ⊆ L(K), and L(Vcom/Gcom) is maximally
controllable and observable with respect to L(Gcom), Σ̃c,
and P . Then the feasible partial-observation supervisor V :

3It is not surprising in this particular example that the same physically
admissible V is produced because, while the two languages L(Vcom/Gcom)
and L(V ′

com/Gcom) are incomparable, they differ only in whether σ3 versus
σ3,s is disabled after certain strings in L(Gcom). Hence, to make each one
physically admissible, the events that were not originally disabled by either
Vcom or V ′

com become disabled by V . For example, since σ3 (resp., σ3,s)
is disabled after σ1,aσ3,a by Vcom (resp., V ′

com), we have to disable σ3,s

(resp., σ3) after σ1,aσ3,a to make Vcom (resp., V ′
com) physically admissible.

Consequently, in this example, the decisions after σ1,aσ3,a, which differ in
Vcom and V ′

com , end up with the same result that both σ3 and σ3,s are
disabled after σ1,aσ3,a by V . In general, though, Vcom,1 and Vcom,2 that
are incomparable may result in incomparable V1 and V2.

14 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

P (L(G̃)) → 2Σ̃c derived from Vcom as in (26) is a solution
to Problem 1.

Proof. Let Vcom : P (L(Gcom)) → 2Σ̃c be a feasible
partial-observation supervisor such that L(Vcom/Gcom) ̸= ∅,
L(Vcom/Gcom) ⊆ L(K) and L(Vcom/Gcom) is maximally
controllable and observable with respect to L(Gcom), Σ̃c,
and P . Define the feasible partial-observation supervisor V :

P (L(G̃)) → 2Σ̃c from Vcom as in (26). We now show that V
solves Problem 1. To this end, we show that V satisfies all the
conditions C1–C3 in Problem 1.
Proof of C1: Condition (8) automatically holds for V by the
construction of V in (26).

Proof of C2: Again by the construction of V in (26), for all
ω ∈ Lcom and σ ∈ Σ̃, if V enables σ after ω, then Vcom

enables σ after ω. This means that if ωσ ∈ L(V/G̃) and
ωσ ∈ Lcom , then ωσ ∈ L(Vcom/Gcom). Thus, it holds that

L(V/G̃) ∩ Lcom ⊆ L(Vcom/Gcom). (27)

From L(Vcom/Gcom) ⊆ L(K) and Proposition 2, it holds that

L(Vcom/Gcom) ⊆ LK . (28)

Then, from (27) and (28), we have that

L(V/G̃) ∩ Lcom ⊆ LK .

Proof of C3: Suppose that there is another feasible supervisor
V ′ : P (L(G̃)) → 2Σ̃c which is less restrictive than V , that is,

L(V/G̃) ⊂ L(V ′/G̃). (29)

We show that V ′ is either not feasible or violates one of C1
or C2 in Problem 1.

Expression (29) implies

L(V/G̃) ∩ Lcom ⊂ L(V ′/G̃) ∩ Lcom .

For convenience, let M ′ = L(V ′/G̃) ∩ Lcom and M =
L(V/G̃) ∩ Lcom . By assumption, L(Vcom/Gcom) ⊆ L(K).
Since L(K) = LK by Proposition 2, we know that
L(Vcom/Gcom) ⊆ LK . Also, by (7), we have that
LK ⊆ Lcom . Furthermore, by (27), we get that M ⊆
L(Vcom/Gcom). Therefore, there are three possibilities for
M ′, captured by the following three cases:
Case 1. M ⊂ M ′ ⊆ L(Vcom/Gcom)

Case 2. L(Vcom/Gcom) ⊂ M ′ ⊆ LK

Case 3. LK ⊂ M ′ ⊆ Lcom

First, consider Case 1, namely M ⊂ M ′ ⊆ L(Vcom/Gcom).
We show that such V ′ is not physically admissible due to a
string in M ′ \M , i.e., condition C1 does not hold in this case.

By (26), V disables both σ ∈ Σc and σs ∈ Σc,s (where
σs is the sensor attack event corresponding to σ) after any
string ω ∈ L(Vcom/Gcom) such that σ ∈ Vcom(P (ω)) or
σs ∈ Vcom(P (ω)). Thus, by M ⊂ M ′ ⊆ L(Vcom/Gcom),
there exists a string ω′ ∈ M and an event σ′ ∈ Σc such that
P1. ω′σ′ ∈ M ′ \M ; or

P2. ω′σ′
s ∈ M ′ \M .

If P1 is true, by M ⊂ M ′ ⊆ L(Vcom/Gcom), it holds that

ω′σ′ /∈ M ∧ ω′σ′ ∈ L(Vcom/Gcom). (30)

By ω′σ′ /∈ M and (26), we have that ω′σ′
s /∈ M (i.e.,

σ′ ∈ V (P (ω′)) and thus σs ∈ V (P (ω))). From (30) we have
ω′σ′ ∈ L(Vcom/Gcom) (i.e., σ′ /∈ Vcom(P (ω′))) and therefore
by (26),

ω′σ′
s /∈ L(Vcom/Gcom).

Thus, by M ′ ⊆ L(Vcom/Gcom), it holds that

ω′σ′
s /∈ M ′. (31)

Hence, from P1 and (31), we have that σ′ /∈ V ′(P (ω′)) and
σ′
s ∈ V ′(P (ω′)). This violates condition (8).
If P2 is true, by M ⊂ M ′ ⊆ L(Vcom/Gcom), it holds that

ω′σ′
s /∈ M ∧ ω′σ′

s ∈ L(Vcom/Gcom). (32)

By ω′σ′
s /∈ M and (26), we have that ω′σ′ /∈ M (i.e.,

σ′
s ∈ V (P (ω′)) and thus σ′ ∈ V (P (ω′))). From (32) we

have ω′σ′
s ∈ L(Vcom/Gcom) (i.e., σ′

s /∈ Vcom(P (ω′))) and so
by (26),

ω′σ′ /∈ L(Vcom/Gcom).

Thus, by M ′ ⊆ L(Vcom/Gcom), it holds that

ω′σ′ /∈ M ′. (33)

Hence, from P2 and (33), we have that σ′
s ∈ V ′(P (ω′)) and

σ′ /∈ V ′(P (ω′)). This violates condition (8).
From the above two cases, we can conclude that V ′ is not

physically admissible and violates condition C1.
Next, consider Case 2, namely L(Vcom/Gcom) ⊂ M ′ ⊆

LK . We show that L(V ′/G̃) is either uncontrollable or un-
observable with respect to Lcom , Σ̃c, and P , i.e., V ′ in this
case contradicts the assumption that V ′ is feasible (as only
sublanguage that are both controllable and observable can be
synthesized by feasible supervisors [1]). Since L(Vcom/Gcom)
is already maximally controllable and observable with respect
to Lcom , Σ̃c, and P , from L(Vcom/Gcom) ⊂ M ′, the language
M ′ is uncontrollable or unobservable with respect to Lcom ,
Σc∪Σc,s, and P . Since Lcom is prefix-closed and controllable
with respect to Lcom and Σ̃c, and L(V ′/G̃) is prefix-closed,
if M ′ = L(V ′/G̃) ∩ Lcom is uncontrollable with respect to
Lcom , then L(V ′/G̃) is uncontrollable with respect to Lcom

and Σ̃c. This is a result of the fact that prefix-closed and
controllable languages are closed under intersection [2]. This
contradicts the assumption that V ′ is feasible. Since Lcom

is prefix-closed and observable with respect to Lcom and P ,
if M ′ = L(V ′/G̃) ∩ Lcom is unobservable with respect to
Lcom and P , then L(V ′/G̃) is unobservable with respect
to Lcom and P , as L(V ′/G̃) is prefix-closed by definition
and observability is closed under intersection for prefix-closed
languages [2]. This contradicts the assumption that V ′ is
feasible.

Finally, consider Case 3, namely LK ⊂ M ′ ⊆ Lcom . In this
case, V ′ directly violates condition C2.

Therefore, any supervisor V ′ that is less restrictive than
V cannot be a solution to Problem 1. Consequently, the
supervisor V satisfies C3.

AUTHOR et al.: TITLE 15

The proof is now complete.

Remark 4. If our procedure yields an empty supervisor V ,
then there does not exist a nonempty sublanguage of LK

that is controllable with respect to Lcom and observable
with respect to Lcom and P . This means that Problem 1 is
not solvable, since no feasible supervisor which generates a
nonempty sublanguage of LK can be synthesized in such a
case. Therefore (in combination with Theorem 1), we have
shown that Problem 1 is solvable if and only if the supervisor
V produced by our procedure is nonempty.

V. CONCLUSIONS

We have studied resilient supervisory control against in-
definite actuator and sensor attacks, as an extension of the
previous work in [26]. We have introduced a novel property
called physical admissibility which ensures that no disabled
event is subject to a sensor attack. Using this new notion, our
problem of finding a feasible physically-admissible partial-
observation supervisor which provides prescribed resilience
against indefinite actuator and sensor attacks has been for-
mulated. Moreover, we have developed an automaton-based
procedure to synthesize a solution supervisor. Ensuring that
the resulting supervisor is physically admissible was a new
and essential step in our procedure.

In future work, we aim to develop tools for systematically
determining or estimating appropriate values for the safety
requirements Ra and Rs for practical systems. We also aim to
consider other types of sensor attacks such as event insertion,
deletion, and editing. Moreover, we are interested in extending
this work to a decentralized architecture in which there are
multiple supervisors with different observation capabilities,
and investigate whether attackers can exploit constraints on
decentralized supervisors such as fusion rules.

REFERENCES

[1] W. M. Wonham and K. Cai, Supervisory Control of Discrete-Event
Systems. Springer, 2019.

[2] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems (3rd Edition). Springer, 2021.

[3] L. K. Carvalho, Y.-C. Wu, R. Kwong, and S. Lafortune, “Detection
and prevention of actuator enablement attacks in supervisory control
systems,” in International Workshop on Discrete Event Systems, 2016,
pp. 298–305.

[4] L. K. Carvalho, Y.-C. Wu, R. Kwong, and S. Lafortune, “Detection
and mitigation of classes of attacks in supervisory control systems,”
Automatica, vol. 97, pp. 121–133, 2018.

[5] P. M. Lima, L. K. Carvalho, and M. V. Moreira, “Detectable and
undetectable network attack security of cyber-physical systems,” IFAC-
PapersOnLine, vol. 51, no. 7, pp. 179–185, 2018.

[6] J. Yao, X. Yin, and S. Li, “On attack mitigation in supervisory control
systems: A tolerant control approach,” in IEEE Conference on Decision
and Control, 2020, pp. 4504–4510.

[7] Z. He, N. Wu, and Z. Li, “Estimation and prevention of actuator
enablement attacks in discrete-event systems under supervisory control,”
IEEE Transactions on Automatic Control, vol. 69, no. 9, pp. 5963–5978,
2024.

[8] R. Tai, L. Lin, and R. Su, “On decidability of existence of fortified
supervisors against covert actuator attackers,” IEEE Transactions on
Automatic Control, vol. 69, no. 3, pp. 1898–1905, 2024.

[9] M. Wakaiki, P. Tabuada, and J. P. Hespanha, “Supervisory control of
discrete-event systems under attacks,” Dynamic Games and Applica-
tions, vol. 9, pp. 965–983, 2019.

[10] R. Meira-Góes, H. Marchand, and S. Lafortune, “Towards resilient
supervisors against sensor deception attacks,” in IEEE Conference on
Decision and Control, 2019, pp. 5144–5149.

[11] R. Meira-Góes, S. Lafortune, and H. Marchand, “Synthesis of super-
visors robust against sensor deception attacks,” IEEE Transactions on
Automatic Control, vol. 66, no. 10, pp. 4990–4997, 2021.

[12] J. Yao, S. Li, and X. Yin, “Sensor deception attacks against security in
supervisory control systems,” Automatica, vol. 159, p. 111330, 2024.

[13] Q. Zhang, C. Seatzu, Z. Li, and A. Giua, “Joint state estimation under
attack of discrete event systems,” IEEE Access, vol. 9, pp. 168 068–
168 079, 2021.

[14] R. Meira-Góes, E. Kang, R. Kwong, and S. Lafortune, “Stealthy
deception attacks for cyber-physical systems,” in IEEE Conference on
Decision and Control, 2017, pp. 4224–4230.

[15] Q. Zhang, Z. Li, C. Seatzu, and A. Giua, “Stealthy attacks for partially-
observed discrete event systems,” in International Conference on Emerg-
ing Technologies and Factory Automation, vol. 1, 2018, pp. 1161–1164.

[16] R. Meira-Góes, R. Kwong, and S. Lafortune, “Synthesis of sensor
deception attacks for systems modeled as probabilistic automata,” in
American Control Conference, 2019, pp. 5620–5626.

[17] R. Meira-Góes, E. Kang, R. H. Kwong, and S. Lafortune, “Synthesis
of sensor deception attacks at the supervisory layer of cyber-physical
systems,” Automatica, vol. 121, p. 109172, 2020.

[18] R. Su, “On decidability of existence of nonblocking supervisors resilient
to smart sensor attacks,” Automatica, vol. 154, p. 111076, 2023.

[19] G. Xie, Y. Tong, X. Wang, and C. Seatzu, “Resilient supervisor synthesis
for labeled petri nets against sensor attacks,” IEEE Transactions on
Automatic Control, vol. 70, no. 6, pp. 4045–4052, 2025.

[20] P. M. Lima, M. V. Alves, L. K. Carvalho, and M. V. Moreira, “Security
of cyber-physical systems: Design of a security supervisor to thwart
attacks,” IEEE Transactions on Automation Science and Engineering,
vol. 19, no. 3, pp. 2030–2041, 2021.

[21] R. Meira-Góes, H. Marchand, and S. Lafortune, “Dealing with sensor
and actuator deception attacks in supervisory control,” Automatica, vol.
147, p. 110736, 2023.

[22] Y. Wang, A. K. Bozkurt, N. Smith, and M. Pajic, “Attack-resilient
supervisory control of discrete-event systems: a finite-state transducer
approach,” IEEE Open Journal of Control Systems, vol. 2, pp. 208–220,
2023.

[23] R. Tai, L. Lin, Y. Zhu, and R. Su, “Synthesis of distributed covert
sensor–actuator attackers,” IEEE Transactions on Automatic Control,
vol. 69, no. 8, pp. 4942–4957, 2024.

[24] Z. He, N. Wu, R. Su, and Z. Li, “Cyber-attacks with resource constraints
on discrete event systems under supervisory control,” IEEE/CAA Journal
of Automatica Sinica, vol. 12, no. 3, pp. 585–595, 2025.

[25] S. Oliveira, A. Leal, M. Teixeira, and Y. Lopes, “A classification of
cybersecurity strategies in the context of discrete event systems,” Annual
Reviews in Control, vol. 56, p. 100907, 2023.

[26] Z. Ma and K. Cai, “On resilient supervisory control against indefinite ac-
tuator attacks in discrete-event systems,” IEEE Control Systems Letters,
vol. 6, pp. 2942–2947, 2022.

[27] K. Cai, Invitation to Supervisory Control of Discrete-Event Systems:
with Hands-On PyTCT. Kindle Direct Publishing, 2024. [Online].
Available: https://www.caikai.org/invitation-scdes

[28] F. Lin and W. M. Wonham, “On observability of discrete-event systems,”
Information sciences, vol. 44, no. 3, pp. 173–198, 1988.

[29] X. Yin and S. Lafortune, “Synthesis of maximally permissive supervisors
for partially-observed discrete-event systems,” IEEE Transactions on
Automatic Control, vol. 61, no. 5, pp. 1239–1254, 2015.

[30] K. Cai, R. Zhang, and W. Wonham, “Relative observability of discrete-
event systems and its supremal sublanguages,” IEEE Transactions on
Automatic Control, vol. 60, pp. 659–670, 2015.

16 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

Shoma Matsui received the B.Eng. in Electrical
and Information Engineering degree from Osaka
City University, Japan, in 2019, the M.Sc. in
Engineering degree from University of Michi-
gan, USA, in 2020, and the Ph.D. degree from
Queen’s University, Canada, in 2025. His re-
search interests include secrecy, privacy, and
safety of Discrete-Event Systems, and applica-
tions to computer and network systems.

Julien Bourgain-Wilbal received the B.Eng.
in Mechanical Engineering degree from ENS
Paris-Saclay, France, in 2022, and a M.Sc. in
Engineering degree from University of Paris-
Saclay, France, in 2024. He is currently a PhD
student at University Paris-Saclay, France.

Yudai Saito received the B.Eng. degree in 2024
and is pursuing the M.Inf. degree in the Depart-
ment of Core Informatics, Osaka Metropolitan
University, Japan. His research interest is secu-
rity in discrete-event systems.

Ziyue Ma received the B.Sc. degree and the
M.Sc. degree in Chemistry from Peking Uni-
versity, Beijing, China, in 2007 and 2011, re-
spectively. In 2017 he got the Ph.D degree
in co-tutorship between the School of Electro-
Mechanical Engineering of Xidian University,
China (in Mechatronic Engineering), and the De-
partment of Electrical and Electronic Engineer-
ing of University of Cagliari, Italy (in Electronics
and Computer Engineering). He joined Xidian
University in 2011, where he is currently an

Associate Professor in the School of Electro-Mechanical Engineering.
His current research interests include control theory in discrete event
systems, automata and Petri net theories, fault diagnosis/prognosis,
resource optimization, and information security.

Gregory Faraut received the B.S. degree in
electrical engineering and the M.S. degree in
computer science from the University of Nice
Sophia Antipolis, Nice, France, in 2004 and
2006, respectively, and the Ph.D. degree in auto-
matic control from the Ampere Lab, INSA Lyon,
Villeurbanne, France, in 2010. Since 2011, he
has been an Associate Professor of Automatic
Control with LURPA, ENS Paris-Saclay, Univer-
sity of Paris-Saclay, and Full Professor since
2022. His research interests concern the field

of discrete-event systems with applications to cyber-physical systems,
behavioral identification, resilient control, and, more recently, digital
twins for cognitive systems.

Kai Cai received the B.Eng. degree in Electri-
cal Engineering from Zhejiang University, China,
in 2006; the M.A.Sc. degree in Electrical and
Computer Engineering from the University of
Toronto, Canada, in 2008; and the Ph.D. de-
gree in Systems Science from the Tokyo Insti-
tute of Technology, Japan, in 2011. He is cur-
rently a Full Professor with the Department of
Core Informatics, Osaka Metropolitan University.
Dr. Cai’s research interests include safe control
of AI-physical systems, supervisory control of

discrete-event systems, and cooperative control of multi-agent systems.

Karen Rudie received her Ph.D. in 1992 from
the University of Toronto, in the Systems Con-
trol Group. In 1992–93 she was a postdoctoral
researcher at the Institute for Mathematics and
its Applications, Minnesota. Since 1993 she has
been at Queen’s University (Canada) where
she is a Professor of Electrical and Computer
Engineering and Director (Interim) of Ingenuity
Labs Research Institute. She has served on
the editorial board of the Journal of Discrete
Event Dynamic Systems (since 2000) where she

is currently a Department Editor, and was an Associate Editor for
IEEE Transactions on Control Systems Technology (2015–2020), IEEE
Transactions on Automatic Control (1996–1999), and IEEE Control
Systems Magazine (2003). From 2004–2006 she was an IEEE Control
Systems Society Distinguished Lecturer. She is a Fellow of the IEEE.
Her research focuses on discrete-event systems—most recently with an
emphasis on their application to the security of cyber-physical systems.

