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Abstract

In this paper we propose a fast algorithm for supervisor reduction/localization of discrete-event systems (DES). Supervisor reduc-
tion/localization is based on merging pairs of states of the supervisor that are control consistent. Our proposed algorithm employs two
new lists – a mergeable list and a non-mergeable list – which store state pairs that have been confirmed to be control consistent or in-
consistent, respectively. With these two lists, our algorithm eliminates any repeated control consistency checks, and guarantees that every
state pair will be checked exactly once. We prove that the time complexity of our new algorithm is O(n2), where n is the state number
of the supervisor; this improves all previously known results on supervisor reduction/localization algorithms. Moreover, we provide the
space complexity of the new algorithm. We employ numerical examples to empirically compare the computing time and local controller’s
state number obtained by our proposed algorithm and the original supervisor reduction/localization algorithms.

1 Introduction

The supervisory control theory [11], [19], [18], [6] is a pow-
erful framework for the synthesis of control for discrete-
event systems (DES). With a single centralized supervisor,
the controlled behavior of the plant, with respect to (w.r.t.)
an imposed specification, can be made optimal and non-
blocking. The goal of making the supervisor’s control logic
more comprehensible is achieved by supervisor reduction.

The supervisor reduction problem was first studied in [15].
Subsequently, the authors of [12] proposed a polynomial-
time supervisor reduction algorithm, and proved that com-
puting a minimal supervisor is NP-hard. This work was fur-
ther extended in [13]. Supervisor reduction is applied in
many scenarios. A attack model reduction problem is re-
duced to the supervisor reduction problem to provide a sim-
plified attack logic, which discloses the key observation se-
quences resulting in the damage infliction, and thus to guide
system designers to improve security level [14],[8]. The su-
pervisor reduction algorithm in [12] is used to synthesize the
supremal networked supervisor with a reduced size in [9].

To synthesize a distributed control architecture, supervisor
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localization explored in [3][5] has a similar procedure to
supervisor reduction in [12]. As a generalization of supervi-
sor reduction, supervisor localization has a new feature: it is
conducted based solely on local (agent wise) control infor-
mation. The authors of [2] developed a general framework,
called “consistent reduction”, for formalizing and solving a
large class of minimization/reduction problems in DES. An
algorithm is proposed to solve the formulated consistent re-
duction problem based on splitting covers. In the state tree
structure (STS) framework, the authors of [4] developed a
counterpart state-based localization theory. Compared to the
language-based theory in [3][5], they also presented a more
efficient symbolic localization algorithm, by exploiting bi-
nary decision diagram computation. Reduction [12] and lo-
calization [3][5] procedures applied to a monolithic supervi-
sor that is synchronizing w.r.t. the initial state, respectively,
reduced and localized supervisors that are also synchroniz-
ing w.r.t. the initial state, if the premises are fulfilled in [1].
Instead of reducing the number of states in [3][5][12], the
authors of [10] improved supervisor reduction for DES by
reducing the number of events to make supervisor or con-
troller more manageable.

The crucial operation in the localization (or reduction) al-
gorithm is to check control consistency (precise definition
given in Section 2) for every state pair of the supervisor,
and two states may be merged together if they are control
consistent as well as all their future states (reachable by the
same strings) are also control consistent. The latter is re-
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Fig. 1. Supervisor SUP and its corresponding state pair transition
diagram. Consider the situation that in SUP, σ3 is the only con-
trollable event which is ‘don’t care’ (neither enabled nor disabled)
at x0 and is enabled at state x1 but is disabled at state x2. We say
that states x and x′ are control consistent if there is no control-
lable event that is enabled at x but is disabled at x′, or vice versa.
Hence, only x1 and x2 are not control consistent. In the state pair
transition diagram, (x0,x1)

σ1−→ (x0,x2) means that x0 and x2 are
the corresponding future states of x0 and x1, respectively, by a
one-step transition σ1 defined in SUP.

ferred to as the mergeability condition, and is verified by a
function called CHECK MERGE. As one of the arguments
of the function CHECK MERGE, a waiting list stores all the
state pairs whose future states are waiting to be checked for
control consistency. Unfortunately, this waiting list is initial-
ized afresh at each iteration and does not ‘memorize’ which
state pairs have already been checked. As a result, control
consistency of some state pairs may be checked repeatedly
in [3][5][12]. The reduction and localization algorithms have
(worst-case) time complexity O(n4), where n denotes the
state number of the given supervisor.

An illustrative example is given in Fig. 1. Suppose that the
original reduction algorithm in [12] (or localization algo-
rithm in [3][5]) is adopted for the example. Since state pair
(x0,x2) is the corresponding future state pair of (x0,x1) via
event σ1, and (x1,x2) is the corresponding future state pair of
(x0,x2) via event σ2, control consistency of the above three
pairs will all be checked in the first iteration of the algorithm
to determine the mergeability of x0 and x1. In the second it-
eration for mergeability of x0 and x2, control consistency of
(x0,x2) and (x1,x2) will be checked again. Similarly, in the
third and last iteration for mergeability of x1 and x2, control
consistency of (x1,x2) will be checked again. In this paper,
we propose a generalization of the localization algorithm in
[3][5] by inserting new filters to avoid repeated checking for
control consistency of each state pair. If we adopt the new
algorithm proposed in this paper for the above example, then
all the repeated checking operations for (x0,x2) and (x1,x2)
will not take place in the last two iterations.

In this paper, we develop a new supervisor localization al-
gorithm by employing two new lists – a mergeable list and
a non-mergeable list – which store state pairs that have been
confirmed to satisfy or dissatisfy the mergeability condi-
tion, respectively. With these two lists serving as filters, our
proposed algorithm eliminates any repeated control consis-
tency checks, and guarantees that every state pair will be
checked exactly once. In comparison with the reduction al-
gorithm in [12] and the localization algorithm in [3][5], the
time complexity of the algorithm in this paper is reduced
from O(n4) to O(n2). Therefore, the algorithm we present is
more efficient than those in [3][5][12]. Notice that, the sym-
bolic localization algorithm based on STS in [4] has time
complexity O(n3). In the worst case, n(n− 1)/2 calls are

made to the function CHECK MERGE, which then calls it-
self at most n− 2 times. Since the former n(n− 1)/2 calls
of CHECK MERGE are unavoidable, even if the idea of us-
ing mergeable and non-mergeable lists is adopted, the STS
algorithm would have at least O(n2) time complexity,

With our developed new algorithm, it becomes more effi-
cient to compute a reduced supervisor for improving com-
prehensibility of control logic, as well as more efficient to
synthesize local controllers for component agents to estab-
lish distributed control architecture. For the latter, in cases
where agent number and/or specifications change such that
new local controllers must be computed, our more efficient
algorithm will be more useful.

Compared to the conference predecessor [20], this paper
provides (i) proof of the time complexity result; (ii) a new
result of space complexity and its proof; (iii) new empirical
studies for numerical comparisons.

The remainder of the paper is organized as follows. Sec-
tion 2 presents preliminaries. A new supervisor localization
algorithm is presented, and the time complexity and space
complexity of the algorithm are analyzed in Section 3. In
this section the computational efficiency of the algorithm is
demonstrated with an example. We compare the computing
times of our proposed algorithm and the original supervisor
reduction/localization algorithm by numberical examples in
Section 4. We finally draw our conclusions in Section 5.

2 PRELIMINARIES

The DES plant to be controlled is modeled by a genera-
tor G = (Q,Σ,δ ,q0,Qm), where Q is the finite state set,
Σ = Σc∪̇Σu is the finite event set which is partitioned into
two subsets – the controllable event subset Σc and the uncon-
trollable event subset Σu, δ : Q×Σ → Q is the (partial) state
transition function, q0 ∈ Q is the initial state, and Qm ⊆ Q is
the set of marker states. In the usual way, we extend δ such
that δ : Q×Σ∗ → Q, and write δ (q,s)! to mean that δ (q,s)
is defined, where q ∈ Q and s ∈ Σ∗. A string s1 ∈ Σ∗ is a
prefix of another string s ∈ Σ∗, written s1 ≤ s, if there exists
s2 ∈ Σ∗ such that s1s2 = s. The prefix closure of L, written
L, is L := {s1 ∈ Σ∗ | (∃s ∈ L)s1 ≤ s}. A language L is closed
if L = L. The closed behavior of G is the language L(G) :=
{s ∈ Σ∗ | δ (q0,s)!}. The marked behavior of G is the sub-
language Lm(G) := {s ∈ L(G) | δ (q0,s)∈ Qm} ⊆ L(G). The
generator G is nonblocking if Lm(G) = L(G).

Consider that the plant G consists of N (> 1) component
agents Gk = (Qk,Σk,δk, q0,k,Qm,k), k = 1,2, . . . ,N. Write N
for the set of integers {1,2, . . . ,N}. Then the closed and
marked behaviors of G are L(G) = ∥{L(Gk)|k ∈ N} and
Lm(G) = ∥{Lm(Gk)|k ∈ N}, respectively, where ∥ denotes
synchronous product ([18]). In this paper, we assume that
for every k ∈ N, Gk is nonblocking. Each agent’s event set
Σk is partitioned into two subsets – a controllable subset
Σc,k and an uncontrollable subset Σu,k, i.e., Σk = Σc,k∪̇Σu,k.
Hence the plant G is defined over Σ := ∪̇{Σk|k ∈ N}, with
controllable subset Σc := ∪̇{Σc,k|k ∈ N} and uncontrollable
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subset Σu := ∪̇{Σu,k|k ∈ N}. The component agents Gk (k =
1,2, . . . ,N) are implicitly coupled through a specification
language E ⊆ Σ∗ that imposes a constraint on the global
behavior of G, where E may be the synchronous product of
multiple component specifications (see [7] and subsequent
literature, e.g., [16]).

We say that E is controllable w.r.t. G if EΣu ∩ L(G) ⊆ E
[18]. Whether or not a specification language E is control-
lable, we denote by C (E) the family of all sublanguages of
E, i.e., C (E) := {K ⊆ E | KΣu∩L(G)⊆ K}. The empty lan-
guage /0 belongs to C (E). Furthermore, C (E) has a (unique)
supremal element supC (E) :=

⋃
{K|K ∈ C (E)} [18]. For

the plant G and the imposed specification E, the optimal and
nonblocking monolithic supervisor SUP = (X ,Σ,ξ ,x0,Xm)
is such that Lm(SUP) := supC (E ∩Lm(G)) [5]. In the fol-
lowing, we assume that Lm(SUP) ̸= /0, and SUP is feasibly
computable.

The key concept of supervisor localization is control cover,
adapted from [12] for supervisor reduction. Note that the
control information in Σc,k (concerning only the control-
lable events in Σc,k) is characterized by the following four
functions. Let G = (Q,Σ,δ ,q0,Qm), SUP = (X ,Σ,ξ ,x0,Xm)
and define E : X → Pwr(Σ) as E(x) = {σ ∈ Σ | ξ (x,σ)!},
where Pwr(·) denotes powerset. Thus E(x) is the subset
of events that are enabled at state x in SUP. Next de-
fine Dk : X → Pwr(Σc,k) according to Dk(x) = {σ ∈ Σc,k |
¬ξ (x,σ)! & (∃s ∈ Σ∗)(ξ (x0,s) = x & δ (q0,sσ)!)}. Thus
Dk(x) is the subset of controllable events in Σc,k that must
be disabled at x in SUP. We say that x is a ‘don’t care’
state for event σ if σ /∈ E(x) and σ /∈ Dk(x). Then define
M : X →{0,1} according to M(x) = 1 if and only if x ∈ Xm.
So M(x) = 1 means that state x is marked in SUP.
Finally define T : X → {0,1} according to T (x) =
1 if and only if (∃s ∈ Σ∗)ξ (x0,s) = x & δ (q0,s) ∈ Qm.
Hence T (x) = 1 means that there exists a string that reaches
x and also reaches some marker state in G. Based on the
above four definitions, a binary relation Rk on X is defined
[5].

Definition 1 Let Rk ⊆ X ×X. We say that Rk is a control
consistency relation (w.r.t. Σc,k) if for every x,x′ ∈X, (x,x′)∈
Rk if and only if

(1) E(x)∩Dk(x′) = /0 = E(x′)∩Dk(x)
(2) T (x) = T (x′)⇒ M(x) = M(x′).

Obviously, Rk is reflexive and symmetric, but need not be
transitive. Thus it is not an equivalence relation on X . This
fact leads to the following definition of control cover [5].
Recall that a cover of a set X is a family of nonempty subsets
(or cells) of X whose union is X .

Definition 2 Let Ck = {Xi ⊆ X | i∈ Ik} be a cover of X, with
Ik a suitable index set. We say that Ck is a control cover of
X (w.r.t. Σc,k) if

(1) (∀i ∈ Ik,∀x,x′ ∈ Xi)(x,x′) ∈ Rk
(2) (∀i ∈ Ik,∀σ ∈ Σ)

[(
(∃x ∈ Xi)ξ (x,σ)!

)
⇒

(
(∃ j ∈

Ik)(∀x′ ∈ Xi)ξ (x′,σ)! ⇒ ξ (x′,σ) ∈ X j
)]

.

The subsets Xi (i ∈ Ik) are the cells of Ck. A control cover
Ck is a control congruence if Ck happens to be a partition
of X , namely its cells Xi are pairwise disjoint.

With the control cover Ck of X , a nonblocking local con-
troller LOCk for agent Gk can be constructed by the local-
ization procedure in [3][5]. Since the cells of a control cover
may overlap, the constructed local controller may not be
unique. One would like to obtain local controllers of mini-
mal number of states; the minimal state problem is, however,
NP-hard [5, Appendix B]. As a generalization of supervisor
reduction algorithm, a polynomial localization algorithm,
which generates control congruences instead of covers, is de-
veloped in [3][5]. The localization algorithm is implemented
in TCT [17] by computing {LOC1,LOC2, . . . ,LOCN} =
Localize(G,{G1,G2, . . . ,GN},SUP), where plant G, agents
Gk (k ∈ N), and the monolithic supervisor SUP are input
generators, and local controllers LOCk (k ∈ N) are output
generators. Thus a set of local controllers {LOCk | k ∈ N},
one for each agent, with L(LOC) := ∥{L(LOCk)|k ∈ N}
and Lm(LOC) := ∥{Lm(LOCk)|k ∈ N} such that L(G)∩
L(LOC) = L(SUP) and Lm(G)∩L(LOC) = Lm(SUP) hold.

The time complexity of the localization algorithm is O(n4),
where n is the state number of SUP. Since control consis-
tency of some state pairs may be checked repeatedly in the
algorithm (as illustrated in Fig. 1), we are motivated to im-
prove its complexity by avoiding these repeated checks.

3 A NEW LOCALIZATION ALGORITHM

In this section we first present a new and more efficient
polynomial algorithm to compute a control congruence from
which a local controller is generated. We call this algorithm
Fast Localization Algorithm (FLA); it is a variation of the
localization algorithm in [3][5] and the reduction algorithm
in [12]. Then we analyze the time complexity and space
complexity of FLA.

3.1 Algorithm Description

First, we sketch the idea of FLA. Given a supervisor SUP =
(X ,Σc∪̇Σu,ξ ,x0,Xm), let the states in X be labeled as X =
{x0,x1, . . . , xn−1} and Σc,k ⊆ Σc be the set of controllable
events of agent Gk (for a fixed k ∈ N). The proposed FLA
will generate a control congruence Ck of X w.r.t. Σc,k.

Initially, Ck is set to be the singleton partition of X , i.e.,

Ck := {[xi] = {xi}|i = 0,1, . . . ,n−1}=
{[x0], [x1], . . . , [xn−1]}

where [x] denotes the cell in Ck to which x belongs. For a
state x, we call other states x′ ∈ [x] the equivalent states of
x; for a state pair (x′i,x

′
j), we call other state pairs (xi,x j) ∈

[x′i]× [x′j] the equivalent state pairs of (x′i,x
′
j). Then FLA

‘merges’ two cells [x′i] and [x′j] into one if for every xi ∈ [x′i]
and x j ∈ [x′j], xi and x j, as well as all their corresponding fu-
ture states reachable by identical strings, are control consis-
tent in terms of Rk (Definition 1). This ‘mergeability’ condi-
tion is checked by a function called CHECK MERGE in the
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pseudocode below. This CHECK MERGE function checks
control consistency of the current state pair (xi,x j) at line
21 and recursively checks for all their corresponding future
states at lines 25–33. The arguments of the CHECK MERGE
function are a state pair, a ‘waiting list’ W , and the in-
dex i (with current value from line 4). Here the waiting list
W ⊆ X ×X stores all the state pairs whose future states are
waiting to be checked for control consistency. So far the el-
ements introduced above are inherited from [3][5][12]. The
following are five new elements in our proposed FLA.

(1) A ‘mergeable list’
√

list ⊆ X ×X stores all the state
pairs that can be merged, that is, they satisfy the merge-
ability condition.

(2) A ‘non-mergeable list’ × list ⊆ X ×X stores all the
state pairs that cannot be merged, that is, they dissatisfy
the mergeability condition.

(3) An ‘index’ pos(xi,x j) ∈ {1,2, . . . ,n(n−1)/2} records
the position number of (xi,x j) stored in the waiting
list W . For instance, if pos(xi,x j) = 3, this means that
(xi,x j) is the third state pair in W .

(4) A ‘dynamic list’ dynamic(xi,x j), initialized at
line 24, stores all the state pairs in the wait-
ing list W that determine the mergeability of xi
and x j. Note that, if there exist two state pairs
(x′i,x

′
j),(x

′′
i ,x

′′
j ) such that (x′i,x

′
j) ∈ dynamic(xi,x j) and

(x′′i ,x
′′
j ) ∈ dynamic(x′i,x

′
j), then by transitivity we do

not need to have (x′′i ,x
′′
j ) ∈ dynamic(xi,x j).

(5) root(xi,x j) records the minimal position number of the
state pairs in the waiting list W that determine the
mergeability of xi and x j.

Now we present the pseudocode of FLA. The MAIN
procedure consists of lines 1–13, and it calls the func-
tion CHECK MERGE at line 10. CHECK MERGE consists
of lines 14–38, and it calls at line 37 another function
DRAWN CHECK MARK (lines 39–43).

1: procedure MAIN()

2:
√

list := /0;

3: × list := /0;

4: for i := 0 to n−2 do
5: if i > min{m|xm ∈ [xi]} then continue;

6: for j := i+1 to n−1 do

7: if j > min{m|xm ∈ [x j]} then continue;

8: if {(xi,x j),(x j,xi)}∩× list ̸= /0 then continue;

9: W := /0;

10: CHECK MERGE(xi,x j,W, i);

11: for each (xp,xq) ∈W do

12: if {(xp,xq),(xq,xp)}∩
√

list = /0 then
× list :=× list ∪{(xp,xq)};

13: else [xp] = [xq] := [xp]∪ [xq];

14: function CHECK MERGE(xi,x j,W, i)

15: for each xp ∈ [xi]∪
⋃
{[x]|{(x,xi),(xi,x)}∩W ̸= /0} do

16: for each xq ∈ [x j]∪
⋃
{[x]|{(x,x j),(x j,x)}∩W ̸= /0}

do
17: if {(xp,xq),(xq,xp)}∩W ̸= /0 then

18: dynamic(xi,x j) := dynamic(xi,x j)∪{(xp,xq)};

19: continue;

20: if {(xp,xq),(xq,xp)}∩× list ̸= /0 then return false;

21: if (xp,xq) /∈ Rk then × list :=× list ∪{(xp,xq)};
return false;

22: W :=W ∪{(xp,xq)};

23: root(xp,xq) = root(xq,xp) := pos(xp,xq);

24: dynamic(xp,xq) := {(xp,xq)};

25: for each σ ∈ Σ with ξ (xp,σ)! & ξ (xq,σ)! do

26: if [ξ (xp,σ)] = [ξ (xq,σ)] then continue;

27: if {(ξ (xp,σ),ξ (xq,σ)),(ξ (xq,σ),ξ (xp,σ))}∩
W ̸= /0 then

28: dynamic(xp,xq) := dynamic(xp,xq)∪
{(ξ (xp,σ),ξ (xq,σ))};

29: continue;

30: if {(ξ (xp,σ),ξ (xq,σ)),(ξ (xq,σ),ξ (xp,σ))}∩
× list ̸= /0 then return false;

31: if min{m|xm ∈ [ξ (xp,σ)]}< i or min{m|xm ∈
[ξ (xq,σ)]}< i then return false;

32: if CHECK MERGE(ξ (xp,σ), ξ (xq,σ), W , i) =
false then return false;

33: dynamic(xp,xq) := dynamic(xp,xq)∪
{(ξ (xp,σ),ξ (xq,σ))};

34: root(xp,xq) := min{root(x′p,x
′
q)|(x′p,x′q) ∈

dynamic(xp,xq)};

35: dynamic(xi,x j) := dynamic(xi,x j)∪{(xp,xq)};

36: root(xi,x j) := min{root(xp,xq)|(xp,xq) ∈
dynamic(xi,x j)};

37: if root(xi,x j) ≥ pos(xi,x j) then
DRAWN CHECK MARK (xi,x j);

38: return true;

39: function DRAWN CHECK MARK(xi, x j)

40: if {(xi,x j),(x j,xi)}∩
√

list ̸= /0 then return;

41:
√

list :=
√

list ∪{(xi,x j)};

42: for each (xp,xq) ∈ dynamic(xi,x j) do

43: DRAWN CHECK MARK(xp, xq);
Throughout the merging process, in order to generate a con-
trol congruence, it is crucial to prevent states from being
shared by more than one cell. It is achieved by inserting
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three filters at lines 5, 7, and 31 in FLA (which are the same
as [3][5][12]). The proposed algorithm loops until all the
state pairs (xi,x j) ∈ X ×X are checked by lines 4–13. For
convenience, the “(i, j)th iteration” denotes the iteration that
determines the mergeability of xi and x j.

Furthermore, and this is new in FLA, to eliminate any re-
peated control consistency checks and guarantee that every
state pair will be checked exactly once, several additional
filters are inserted at lines 8, 17–20, and 26–30. For every
state pair, there is only one chance to be checked in FLA;
that is, only state pairs that have not been checked can pass
through the above newly added filters. Therefore, the role
of these filters is to exclude repeated control consistency
checks and thereby speed up the localization process.

Comparing with the original CHECK MERGE function in
[3][5][12], we have added the following lines.

(1) Lines 18 and 35 are used to record the state pairs that
directly determine the mergeability of xi and x j; lines
28 and 33 are used to record the state pairs that directly
determine the mergeability of xp and xq.

(2) Line 36 is added to obtain the smallest position num-
ber of the state pairs that determine the mergeability
of xi and x j; line 34 is added to obtain the smallest
position number of the state pairs that determine the
mergeability of xp and xq.

(3) Line 23 records the position number of state pair (xi,x j)
in W .

(4) A new function DRAWN CHECK MARK is called by
CHECK MERGE at line 37, where DRAWN CHECK MARK
consists of lines 39–43. The condition root(xi,x j) ≥
pos(xi,x j) in line 37 is critical, which means that the
mergeability of xi and x j is determined by only those
state pairs having no smaller position number than
(xi,x j) in W .

In what follows, we briefly describe how FLA updates the
two new lists:

√
list and × list.

(1) When checking mergeability of states xi and x j, if all
their corresponding future state pairs (if they exist) sat-
isfy the mergeability condition according to the proce-
dure, and the position numbers of these state pairs are
no smaller than that of (xi,x j), i.e., (xi,x j) can pass
line 37, then the mergeability of xi and x j is confirmed,
and we can add all the related state pairs to

√
list by

lines 39–43; otherwise the mergeability of xi and x j is
still pending ((xi,x j) cannot pass line 37), and we do
not add these related state pairs to

√
list.

(2) When checking mergeability of cells [xi] and [x j], if all
the related state pairs are confirmed to be mergeable,
then all the related state pairs will be added to

√
list

by lines 39–43; if there exits one pair of states that
cannot be merged, i.e., the state pair fails at a line of
lines 20, 21, or 30–32, then the state pair will be added
to × list by line 21, and all the state pairs that are in
W , but not in

√
list, will be added to × list by line 12.

Based on the above outline, we present in the following the

detailed updates of
√

list and × list according to the steps
of the proposed algorithm.

(1) Suppose that (xp,xq) /∈ Rk. By line 21, (xp,xq) will
be added to × list, and CHECK MERGE (xi,x j,W, i) =
false. It follows from line 12 that all the state pairs that
are in W , but not in

√
list, will be added to × list,

and the checking operation for mergeability of xi and
x j will be terminated.

(2) Suppose that (xp,xq) ∈ Rk, and (xp,xq) has no
corresponding future states. Thus root(xp,xq) =
pos(xp,xq) = 1, and (xp,xq) passes line 37. It follows
from line 41 that

√
list :=

√
list ∪{(xp,xq)}. Hence

the checking operation for mergeability of xp and xq
will be terminated, and then the mergeability of other
state pairs x′p and x′q that have not been checked will
continue to be verified.

(3) Suppose that (xp,xq)∈Rk, and there exist some events
σ1,σ2, . . . ,σl ∈ Σ such that ξ (xp,σ)! and ξ (xq,σ)!,
where σ ∈ {σ1,σ2, . . . ,σl}.

(3a) If ξ (xp,σ) and ξ (xq,σ) have no corresponding
future states, where σ ∈ {σ1,σ2, . . . ,σl}, then the
mergeability of ξ (xp,σ) and ξ (xq,σ) is checked
as follows.

(i) If they satisfy the condition of line 26, then
go to Step (v) below; otherwise go to Step
(ii).

(ii) If they fail at line 27, i.e., (ξ (xp,σ),ξ (xq,σ))
or (ξ (xq,σ),ξ (xp,σ)) is in W , by lines
27–29, then (ξ (xp,σ),ξ (xq,σ)) is added to
dynamic(xp,xq), and go to Step (v) below;
otherwise go to Step (iii).

(iii) If they fail at line 30 or line 31, by line 12,
then all the state pairs that are in W , but not
in

√
list, will be added to × list, and the

checking operation for mergeability of xi and
x j will be terminated.

(iv) If they fail at line 32, then CHECK MERGE
(xi,x j,W, i) = false. It follows from line 12
that all the state pairs that are in W , but not
in

√
list, will be added to × list, and the

checking operation for mergeability of xi and
x j will be terminated.

(v) The mergeability of the other corresponding
future states that have not been checked will
continue to be verified by repeating Steps
(i)–(v). Assume that all the future state pairs
(ξ (xp,σ),ξ (xq,σ)) pass lines 26–33. Then
we calculate the smallest position number of
(xp,xq) in W by the dynamic list of (xp,xq).
If (xp,xq) satisfies the condition of line 37,
then all the related state pairs will be added
to

√
list; otherwise the mergibility of xp and

xq is still pending, and (xp,xq) will not be
added to

√
list. Hence the checking opera-

tion for mergeability of xp and xq is termi-
nated, and the mergeability of other states x′p
and x′q that have not been checked will con-
tinue to be checked.
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(3b) If there exists an event σ ′ ∈ Σ such that
ξ (ξ (xi,σ),σ ′)! and ξ (ξ (x j,σ),σ ′)!, then the
mergeability of ξ (ξ (xi,σ),σ ′) and ξ (ξ (x j,σ),σ ′)
will be checked recursively in the same way as
Step (3a).

An example that illustrates the steps of FLA in detail can
be found in the conference precursor [20].

3.2 Complexity Analysis

In this subsection, we study the time complexity and space
complexity of the proposed FLA. First, we analyze the time
complexity.

Theorem 1 Given a supervisor SUP with state set X and
|X | = n, FLA terminates in finite steps, has (worst-case)
time complexity O(n2), and the generated Ck is a control
congruence of X.

Proof. According to lines 4 and 6, the MAIN procedure
can call the function CHECK MERGE (at line 10) at most
n(n−1)/2 times. In each call of CHECK MERGE, the main
operation is to check whether or not (xi,x j) ∈ Rk for fixed
i and j involved in that call (the same as [3][5][12]). The
key here is to show that by lines 5, 7, 8, 17–19, and 26–31
that control consistency of (xi,x j) will be checked exactly
once in the entire process (from start to termination of FLA).
To prove this statement, we need to consider two cases as
follows.

(1) Assume that control consistency of (xi,x j) has been
checked in a previous (i′, j′)th iteration (i.e., i′ < i, or
i′ = i and j′ < j). Thus (xi,x j) must be in either

√
list

or × list. (Case i) If (xi,x j) ∈
√

list, by line 13, then
states xi and x j had been merged into one cell in the
(i′, j′)th iteration. According to lines 5, 7, 26, and 31,
the (i, j)th iteration will be terminated, and thus control
consistency of (xi,x j) will not be checked again in the
remaining iterations. (Case ii) If (xi,x j) ∈ × list, by
lines 8, 20, and 30, then control consistency of (xi,x j)
will not be checked again in the remaining iterations.

(2) Assume that control consistency of (xi,x j) has not been
checked in any previous iterations and will be checked
in the current (i, j)th iteration. (Case i) If (xi,x j) /∈Rk,
by line 21, then (xi,x j) will be added to × list, and the
(i, j)th iteration will be terminated. By lines 8, 20, and
30, control consistency of (xi,x j) will not be checked
again in the remaining iterations. (Case ii) If (xi,x j) ∈
Rk, by line 22, then (xi,x j) will be added to W , by lines
17–19 and lines 27–29, control consistency of (xi,x j)
will not be checked again in the (i, j)th iteration. When
the (i, j)th iteration is finished, by (1) above, control
consistency of (xi,x j) will not be checked again in the
remaining iterations.

Thus, control consistency of each state pair will be checked
exactly once. So the total number of checking operations
(calls from the MAIN procedure and the recursive calls from
the functions CHECK MERGE) is at most |Σ|n(n − 1)/2,
where |Σ| is due to line 25.

Therefore FLA terminates in finite steps, and has (worst-
case) time complexity O(n2).

Finally, since lines 5, 7, and 31 ensure no element overlap-
ping among cells in Ck, the resulting Ck is a partition of X
(the same as [3][5][12]). It then suffices to show that Ck is
a control cover; namely the two conditions (1) and (2) of
Definition 2 in Section 2 are satisfied. That condition (1)
holds is guaranteed by line 21: no two states in the same cell
can be control inconsistent; and (2) holds by lines 25–33:
recursively check control consistency of their future states
reached by identical strings. Therefore we derive that the
resulting Ck is a control congruence, as required. □

Theorem 1 shows that control consistency of each state pair
will be checked exactly once in FLA. Therefore in compari-
son with the reduction algorithm in [12] and the localization
algorithm in [3][5], the time complexity of FLA is reduced
from O(n4) to O(n2).

Example 1 To illustrate the reduction in time complexity,
consider an example similar to that in Fig. 1. Given a super-
visor SUP = (X ,Σ,ξ ,x0,Xm) which has the same structure
as the one in Fig. 1, but with X = {x0,x1, . . . , xn−1}. The
number of state pairs is n(n− 1)/2. The state pair transi-
tion diagram of SUP is displayed in Fig. 2. Suppose that
all the state pairs but (xn−2,xn−1) are control consistent. If
we adopt the algorithm in [3][5][12], then control consis-
tency of every state pair (except for the first (x0,x1)) needs
to be checked repeatedly (for the same reason as the ex-
ample in Fig. 1). In fact the total number of checking op-
erations is n(n − 1)/2 + (n(n − 1)/2 − 1) + · · ·+ 2 + 1 =
(n4 −2n3 +3n2 −2n)/8. If we use FLA, then all the check-
ing operations only take place once and only in the first it-
eration for determining the mergeability of states x0 and x1,
that is, control consistency of all the state pairs will not be
checked again in the remaining iterations. Hence the total
number of checking operations is n(n−1)/2. Therefore, this
example demonstrates that the proposed algorithm improves
the computational efficiency.

Remark 1 To avoid any repeated control consistency
checks,

√
list, × list, pos(xi,x j), dynamic(xi,x j) and

root(xi,x j) are used in FLA. Using these new elements, on
the other hand, makes the order of merging states in FLA
different from the order used in the reduction algorithm in
[12] and the localization algorithm in [3][5]. As a result,
the control congruence Ck generated by FLA is generally
different from those generated in [3,5,12]. In general, the
state sizes of the resulting reduced/local controllers are
incomparable. An example showing that FLA generates a
local controller with a smaller state size than that generated
by algorithms in [3][5][12] can be found in the conference
precursor [20]. The reverse case is also possible, as can be
seen in the examples given in Section IV below.

The improvement of time complexity achieved by FLA is
by means of properly using a number of new elements (e.g.√

list, × list, pos(xi,x j), dynamic(xi,x j) and root(xi,x j)).
Thus intuitively, these new elements increase FLA’s (worst-
case) space complexity. The following is the space complex-
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(x0; x1)
σ1 (x0; x2) (x0; x3)

σ2 σ3 (xn−2; xn−1)
σn(n−1)=2−1

Fig. 2. State pair transition diagram.

ity of FLA.

Theorem 2 Given a supervisor SUP with state set X and
|X |= n, FLA has (worst-case) space complexity O(n4).

Proof. The storage space of FLA includes W ,
√

list, × list,
pos(xi,x j), dynamic(xi,x j) and root(xi,x j). For the state pair
(xi,x j), in the worst case W has n(n−1)/2 state pairs, that
is, all the state pairs are included in W by line 22. Note
that W is initialized as an empty set after each state pair
is checked by line 9, so the storage space for storing W
is then O(n2). Since all state pairs are uniquely stored in
either

√
list by line 12 or × list by line 41, the storage

spaces of
√

list and × list are both O(n2). dynamic(xi,x j),
initialized at line 24, stores all the state pairs in the wait-
ing list W . To determine the mergeability of xi and x j, all
their corresponding future states are checked recursively at
lines 25-33. Hence for each state pair (xi,x j), there are at
most n(n−1)/2 state pairs need to be checked, which im-
plies that the storage space for storing dynamic(xp,xq) (lines
28 and 35) is then O(n2). There are n(n− 1)/2 state pairs
(lines 4 and 6), so the storage spaces of dynamic(xi,x j) is
O(n4). In addition, pos(xi,x j) ∈ {1,2, . . . ,n(n− 1)/2} and
root(xi,x j)∈ {1,2, . . . ,n(n−1)/2} record the position num-
ber and the minimal position number of (xi,x j) stored in the
waiting list W by line 23 and line 36, respectively. There
exist at most n(n− 1)/2 state pairs (xp,xq) to be checked
by the function CHECK MERGE (lines 15-16), so the stor-
age spaces for storing pos(xp,xq) and root(xp,xq) are both
O(n2). There are n(n−1)/2 state pairs totally (lines 4 and 6),
thus the storage spaces for storing pos(xi,x j) and root(xi,x j)

are O(n4). Hence the total storage space for storing all the
associated lists is O(n4). □

Remark 2 The function CHECK MERGE in FLA has the
same arguments xi, x j, W , and i as those in [3][5][12]. On
the other hand, pos(xi,x j), dynamic(xi,x j), root(xi,x j), and
two global variables

√
list and × list are newly added in

FLA. From the above discussion, we know that the space
complexities of W,

√
list, and × list are O(n2). However,

the space complexities of pos(xi,x j), dynamic(xi,x j), and
root(xi,x j) are O(n4) in the worst case. Our proposed algo-
rithm has higher space complexity than those in [3][5][12].
Although FLA consumes extra storage space, it substantially
improves the time complexity. It is an open problem if it is
possible to design a reduction/localization algorithm whose
time complexity and space complexity are both O(n2).

To end this section, we provide two examples to illustrate the
space complexity of FLA. The first example shows a case
in which the worst-case space complexity O(n4) is needed.
On the other hand, the second example shows a case where
only an O(n2) space complexity is required.

Example 2 Given a supervisor SUP = (X ,Σ,ξ ,x0,Xm),
where X = {x0,x1, . . . , xn−1}. We consider the state pair

Table 1
Comparison of computing times (in seconds) by FLA and the
algorithm in [5] for Example 1

n 100 120 140 160 180 200 220 240 260 280 300

[5] 1 2 3 8 15 31 45 56 81 117 168

FLA <1 <1 <1 <1 1 1 1 2 2 2 4

transition diagram of SUP given in Fig. 2. Suppose that all
the state pairs in Fig. 2 are control consistent. Initially, we
have

√
list= /0, × list= /0, and dynamic(xi,x j) = {(xi,x j)},

where i ∈ {0,1, . . . ,n− 2}, j ∈ {1,2, . . . ,n− 1}, and i < j.
Notice that control consistency of all the state pairs will
be checked in the (0,1)th iteration. After the (0,1)th it-
eration, all the state pairs will be added to

√
list. Then

× list = /0. So, the storage space for storing
√

list and
× list is O(n2). It follows from Theorem 1 that control
consistency of all the state pairs will not be checked
again in the remaining iterations. Since dynamic(x0,x1) =
{(x0,x1)}∪dynamic(x0,x2), dynamic(x0,x2) = {(x0,x2)}∪
dynamic(x0,x3), . . . , dynamic(xn−2,xn−1) = {(xn−2,xn−1)},
we have dynamic(x0,x1)= {(x0,x1),(x0,x2), . . . ,(xn−2,xn−1)},
dynamic(x0,x2) = {(x0,x2),(x0,x3), . . . ,(xn−2,xn−1)}, . . . ,
dynamic(xn−2,xn−1) = {(xn−2,xn−1)}. Thus the total num-
ber of state pairs in all the associated lists is n(n−1)/2+
(n(n − 1)/2 − 1) + · · ·+ 2 + 1 = (n4 − 2n3 + 3n2 − 2n)/8.
Consequently, the storage space for storing all the as-
sociated lists is O(n4). Furthermore, by Theorem 2, the
storage space for storing W is O(n2). Therefore, the space
complexity of FLA is O(n4).

Example 3 We consider the same supervisor SUP and the
same state pair transition diagram as those in Example 2.
Suppose that all the state pairs but (xn−2,xn−1) are control
consistent. Similarly, control consistency of all the state pair
will be checked only in the (0,1)th iteration. After the (0,1)th
iteration, all the state pairs will be added to × list. Thus√

list= /0. So the storage space for storing × list and
√

list
is O(n2). We also have dynamic(xi,x j) = {(xi,x j)} for all
i ∈ {0,1, . . . ,n− 2}, j ∈ {1,2, . . . ,n− 1}, and i < j. Hence
the storage space for storing all the associated lists is O(n2).
The storage space for storing W is O(n2). Based on the
above discussion, FLA has space complexity O(n2) in this
case.

4 Empirical Study

In this section, we empirically compare the computing times
of FLA and the localization algorithm in [3][5] with differ-
ent examples, where the computing time is obtained by a
software tool TCT [5].

4.1 Example 1 Continued

In Example 1, it was shown that FLA improves the worst-
case time complexity by the order O(n2), as compared with
the algorithms in [3][5][12]. Here n is the number of states
in the supervisor. To empirically validate this improvement,
we have tested this example for n ranging from 100 to 300
(with interval 20). The result is displayed in Table 1; the
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BUFFERG1 G2
11 10 21 20

Fig. 3. Small Factory.

Fig. 4. Comparison of the computing time of FLA and the local-
ization algorithm in [3][5] for Small Factory. The horizontal axis
represents the number of supervisor’s states. The horizontal brack-
ets (0), (500), and (100) represent the number of buffer’s state.
The vertical axis is the computing time in seconds.

unit is second for rows 2 and 3. As one can observe, the
increase of computing time by FLA is much slower than that
by the algorithm in [5] (similarly by those in [3,12]). This
test empirically confirms our theoretic analysis of improved
efficiency.

4.2 Small Factory

We consider a version of Small Factory in [18] consisting
of one input machine G1 and one output machine G2 as
arranged in Fig. 3. We take a buffer with different slots
and consider only the buffer specification (protecting buffer
against overflow and underflow). We consider the case that
the capacity of buffer increases from 2 to 1000, and show
the computing time of FLA and the localization algorithm in
[3][5], respectively, in Fig. 4. The horizontal axis represents
the number of supervisor’s state. The horizontal brackets
represent the number of buffer’s state. The vertical axis is the
computing time in seconds. The blue curve represents the
computing time using the localization algorithm in [3][5].
The red curve represents the computing time using FLA.

As shown in Fig. 4, in this example the computing time of
the localization algorithm in [3][5] is of the order O(n3),
while it is O(n2) for FLA. Moreover, we have confirmed
that all the local controllers computed by both FLA and the
localization algorithm in [3][5] have exactly the same state
numbers.

4.3 Transfer Line

As displayed in Fig. 5, Transfer Line consists of two ma-
chines M1, M2 followed by a test unit TU; these three
agents are linked by two buffers B1, B2. A workpiece en-
tering the system is first processed by M1 and stored in B1,
then processed by M2 and stored in B2. A processed work-
piece tested by TU may be accepted or rejected; if accepted,
it is released from the system; if rejected, it is returned to
B1 for reprocessing by M2.

Fig. 5. Transfer Line.

Fig. 6. Comparison of the computing time for the case that the
capacity of B1 is fixed at 2 and the capacity of B2 increases from
2 to 30.

Fig. 7. Comparison of the computing time for the case that the
capacity of B1 is fixed at 5 and the capacity of B2 increases from
2 to 30.

Here we show the computing times of FLA and the local-
ization algorithm in [3][5], respectively for different cases.
Fig. 6 and Fig. 7 give the computation results for the cases
that the capacity of buffer B1 is fixed at 2 and 5 respectively,
while the capacity of B2 increases from 2 to 30. Fig. 8 and
Fig. 9 show the results for the cases that the capacity of
buffer B2 is fixed at 2 and 5 respectively, while the capacity
of B1 increases from 2 to 30. Same as Fig. 4, the horizontal
axis represents the number of supervisor’s state. The vertical
axis is the computing time in seconds. The blue curve rep-
resents the time using the localization algorithm in [3][5].
The red curve represents the time using FLA.

Observe that in all these cases the computing time of FLA
and the localization algorithm in [3] [5] are close (within a
fraction of a second) due to fairly small number of supervi-
sor’s state. In all cases, FLA has smaller or the same trend
of increase in computing time as compared to localization
algorithm in [3][5].

Tables 2, 3, 4 present the state numbers of local controllers
computed in the experiments corresponding to Fig. 6–9.
There are three controllable events {1, 3, 5} in Transfer
Line, thus three corresponding local controllers whose aver-
age state numbers are reported in Tables 2, 3, 4 respectively.
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Fig. 8. Comparison of the computing time for the case that the
capacity of B2 is fixed at 2 and the capacity of B1 increases from
2 to 30.

Fig. 9. Comparison of the computing time for the case that the
capacity of B2 is fixed at 5 and the capacity of B1 increases from
2 to 30.

Table 2
Average state comparison of the local controller for event 1.

Transfer Line |B1|= 2
|B2|= (2,3, . . . ,30)

|B1|= 5
|B2|= (2,3, . . . ,30)

|B2|= 2
|B1|= (2,3, . . . ,30)

|B2|= 5
|B1|= (2,3, . . . ,30)

Old Loc. Alg. 56 79 16 79

Fast Loc. Alg. 56 194 16 148

Table 3
Average state comparison of the local controller for event 3.

Transfer Line |B1|= 2
|B2|= (2,3, . . . ,30)

|B1|= 5
|B2|= (2,3, . . . ,30)

|B2|= 2
|B1|= (2,3, . . . ,30)

|B2|= 5
|B1|= (2,3, . . . ,30)

Old Loc. Alg. 31 79 31 78

Fast Loc. Alg. 2 78 30 79

Table 4
Average state comparison of the local controller for event 5.

Transfer Line |B1|= 2
|B2|= (2,3, . . . ,30)

|B1|= 5
|B2|= (2,3, . . . ,30)

|B2|= 2
|B1|= (2,3, . . . ,30)

|B2|= 5
|B1|= (2,3, . . . ,30)

Old Loc. Alg. 46 159 31 239

Fast Loc. Alg. 47 158 2 238

It is observed that the state numbers are generally incompa-
rable between local controllers computed by FLA and the
localization algorithm in [3][5]. In many cases the state num-
bers are close, but there also exist situations where one is
much smaller than the other. Finally due to the current im-
plementation of these algorithms in TCT [5], in which it is
challenging to record consumed memory space, we leave an
empirical study of space complexity in our future work by
a new implementation in a possibly different software tool.

5 CONCLUSIONS

In this paper, we have extended the previous work on su-
pervisor reduction and supervisor localization for DES.

We have presented a fast algorithm for supervisor reduc-
tion/localization of DES by employing a mergeable list and
a non-mergeable list to store the checked state pairs. We
have shown that every state pair will be checked exactly
once in the whole process, and analyzed the time com-
plexity and space complexity of the proposed algorithm.
We have verified the time and space complexities of the
fast algorithm by several examples. In future work, we
aim to further evaluate space complexity of the proposed
algorithm, and inquire a design of a localization algorithm
which has both time and space complexity O(n2).
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