A New Algorithm for Supervisor Reduction/Localization

Yingying Liu 2, Lihua Wu ®, Renyuan Zhang ¢, Zhaojian Cai ¢, Kai Cai ¢

4School of Mechanical and Electronic Engineering, Northwest A & F University, Xi’an, China

bCollege of Mathematics and Informatics, South China Agricultural University, Guangzhou, China

€School of Automation, Northwestern Polytechnical University, Xi’an, China

dDepartment of Core Informatics, Osaka Metropolitan University, Osaka, Japan

Abstract

In this paper we propose a fast algorithm for supervisor reduction/localization of discrete-event systems (DES). Supervisor reduc-
tion/localization is based on merging pairs of states of the supervisor that are control consistent. Our proposed algorithm employs two
new lists — a mergeable list and a non-mergeable list — which store state pairs that have been confirmed to be control consistent or in-
consistent, respectively. With these two lists, our algorithm eliminates any repeated control consistency checks, and guarantees that every
state pair will be checked exactly once. We prove that the time complexity of our new algorithm is O(nz), where n is the state number
of the supervisor; this improves all previously known results on supervisor reduction/localization algorithms. Moreover, we provide the
space complexity of the new algorithm. We employ numerical examples to empirically compare the computing time and local controller’s
state number obtained by our proposed algorithm and the original supervisor reduction/localization algorithms.

1 Introduction

The supervisory control theory [11], [19], [18], [6] is a pow-
erful framework for the synthesis of control for discrete-
event systems (DES). With a single centralized supervisor,
the controlled behavior of the plant, with respect to (w.r.t.)
an imposed specification, can be made optimal and non-
blocking. The goal of making the supervisor’s control logic
more comprehensible is achieved by supervisor reduction.

The supervisor reduction problem was first studied in [15].
Subsequently, the authors of [12] proposed a polynomial-
time supervisor reduction algorithm, and proved that com-
puting a minimal supervisor is NP-hard. This work was fur-
ther extended in [13]. Supervisor reduction is applied in
many scenarios. A attack model reduction problem is re-
duced to the supervisor reduction problem to provide a sim-
plified attack logic, which discloses the key observation se-
quences resulting in the damage infliction, and thus to guide
system designers to improve security level [14],[8]. The su-
pervisor reduction algorithm in [12] is used to synthesize the
supremal networked supervisor with a reduced size in [9].

To synthesize a distributed control architecture, supervisor

Email addresses: yingyingliu611@163.com (Yingying
Liu), 1hwuQoutlook.com (Lihua Wu),
ryzhang@nwpu.edu.cn (Renyuan Zhang),
zhaojian.cai@c.info.eng.osaka-cu.ac. jp
(Zhaojian Cai), cai@Romu.ac. jp (Kai Cai).

Preprint submitted to Automatica

localization explored in [3][5] has a similar procedure to
supervisor reduction in [12]. As a generalization of supervi-
sor reduction, supervisor localization has a new feature: it is
conducted based solely on local (agent wise) control infor-
mation. The authors of [2] developed a general framework,
called “consistent reduction”, for formalizing and solving a
large class of minimization/reduction problems in DES. An
algorithm is proposed to solve the formulated consistent re-
duction problem based on splitting covers. In the state tree
structure (STS) framework, the authors of [4] developed a
counterpart state-based localization theory. Compared to the
language-based theory in [3][5], they also presented a more
efficient symbolic localization algorithm, by exploiting bi-
nary decision diagram computation. Reduction [12] and lo-
calization [3][5] procedures applied to a monolithic supervi-
sor that is synchronizing w.r.t. the initial state, respectively,
reduced and localized supervisors that are also synchroniz-
ing w.r.t. the initial state, if the premises are fulfilled in [1].
Instead of reducing the number of states in [3][5][12], the
authors of [10] improved supervisor reduction for DES by
reducing the number of events to make supervisor or con-
troller more manageable.

The crucial operation in the localization (or reduction) al-
gorithm is to check control consistency (precise definition
given in Section 2) for every state pair of the supervisor,
and two states may be merged together if they are control
consistent as well as all their future states (reachable by the
same strings) are also control consistent. The latter is re-

11 April 2023

SUP

01 a3 02
(2 5 (4 (2
4’ = 0 o (w0, 1) <L (w0, 72) 72 (1, 22)

Fig. 1. Supervisor SUP and its corresponding state pair transition
diagram. Consider the situation that in SUP, o3 is the only con-
trollable event which is ‘don’t care’ (neither enabled nor disabled)
at xo and is enabled at state x| but is disabled at state x,. We say
that states x and x’ are control consistent if there is no control-
lable event that is enabled at x but is disabled at x’, or vice versa.
Hence, only x; and x, are not control consistent. In the state pair

transition diagram, (xg,x]) RN (x0,x2) means that xo and x, are
the corresponding future states of xy and xj, respectively, by a
one-step transition o] defined in SUP.

ferred to as the mergeability condition, and is verified by a
function called CHECK_MERGE. As one of the arguments
of the function CHECK_MERGE, a waiting list stores all the
state pairs whose future states are waiting to be checked for
control consistency. Unfortunately, this waiting list is initial-
ized afresh at each iteration and does not ‘memorize’ which
state pairs have already been checked. As a result, control
consistency of some state pairs may be checked repeatedly
in [3][5][12]. The reduction and localization algorithms have
(worst-case) time complexity O(n*), where n denotes the
state number of the given supervisor.

An illustrative example is given in Fig. 1. Suppose that the
original reduction algorithm in [12] (or localization algo-
rithm in [3][5]) is adopted for the example. Since state pair
(x0,x2) is the corresponding future state pair of (xo,x|) via
event o1, and (x1,xp) is the corresponding future state pair of
(x0,x2) via event 0y, control consistency of the above three
pairs will all be checked in the first iteration of the algorithm
to determine the mergeability of xp and x;. In the second it-
eration for mergeability of xo and x;, control consistency of
(x0,x2) and (x1,xy) will be checked again. Similarly, in the
third and last iteration for mergeability of x; and x,, control
consistency of (x,x;) will be checked again. In this paper,
we propose a generalization of the localization algorithm in
[3][5] by inserting new filters to avoid repeated checking for
control consistency of each state pair. If we adopt the new
algorithm proposed in this paper for the above example, then
all the repeated checking operations for (xo,x») and (x1,x7)
will not take place in the last two iterations.

In this paper, we develop a new supervisor localization al-
gorithm by employing two new lists — a mergeable list and
a non-mergeable list — which store state pairs that have been
confirmed to satisfy or dissatisfy the mergeability condi-
tion, respectively. With these two lists serving as filters, our
proposed algorithm eliminates any repeated control consis-
tency checks, and guarantees that every state pair will be
checked exactly once. In comparison with the reduction al-
gorithm in [12] and the localization algorithm in [3][5], the
time complexity of the algorithm in this paper is reduced
from O(n*) to O(n?). Therefore, the algorithm we present is
more efficient than those in [3][5][12]. Notice that, the sym-
bolic localization algorithm based on STS in [4] has time
complexity O(n?). In the worst case, n(n— 1)/2 calls are

made to the function CHECK_MERGE, which then calls it-
self at most n — 2 times. Since the former n(n—1)/2 calls
of CHECK_MERGE are unavoidable, even if the idea of us-
ing mergeable and non-mergeable lists is adopted, the STS
algorithm would have at least O(n?) time complexity,

With our developed new algorithm, it becomes more effi-
cient to compute a reduced supervisor for improving com-
prehensibility of control logic, as well as more efficient to
synthesize local controllers for component agents to estab-
lish distributed control architecture. For the latter, in cases
where agent number and/or specifications change such that
new local controllers must be computed, our more efficient
algorithm will be more useful.

Compared to the conference predecessor [20], this paper
provides (i) proof of the time complexity result; (ii) a new
result of space complexity and its proof; (iii) new empirical
studies for numerical comparisons.

The remainder of the paper is organized as follows. Sec-
tion 2 presents preliminaries. A new supervisor localization
algorithm is presented, and the time complexity and space
complexity of the algorithm are analyzed in Section 3. In
this section the computational efficiency of the algorithm is
demonstrated with an example. We compare the computing
times of our proposed algorithm and the original supervisor
reduction/localization algorithm by numberical examples in
Section 4. We finally draw our conclusions in Section 5.

2 PRELIMINARIES

The DES plant to be controlled is modeled by a genera-
tor G = (Q,X,8,90,0m), where Q is the finite state set,
Y =X UX, is the finite event set which is partitioned into
two subsets — the controllable event subset . and the uncon-
trollable event subset X, 6 : Q x X — Q is the (partial) state
transition function, go € Q is the initial state, and Q,, C Q is
the set of marker states. In the usual way, we extend § such
that 8 : Q X £* — Q, and write 8(g,s)! to mean that §(g,s)
is defined, where g € Q and s € *. A string s; € X" is a
prefix of another string s € X*, written s; < s, if there exists
s2 € X* such that 5155 = 5. The prefix closure of L, written
L,is L:={s; €X* | (Is € L)s; <s}. A language L is closed
if L= L. The closed behavior of G is the language L(G) :=
{s € £*| 6(qo,s)!}. The marked behavior of G is the sub-
language L,,(G) := {s € L(G) | 6(q0,s) € Om} C L(G). The
generator G is nonblocking if L, (G) = L(G).

Consider that the plant G consists of N (> 1) component
agents Gy = (Qk,Zk,Sk, qo‘kan‘k), k=1,2,...,N. Write N
for the set of integers {1,2,...,N}. Then the closed and
marked behaviors of G are L(G) = ||[{L(Gy)|k € N} and
Ly (G) = |[{Ln(Gy)|k € N}, respectively, where || denotes
synchronous product ([18]). In this paper, we assume that
for every k € N, Gy is nonblocking. Each agent’s event set
Y is partitioned into two subsets — a controllable subset
Y.« and an uncontrollable subset X, 4, i.e., Xy = X (UL, ;.
Hence the plant G is defined over X := U{X;|k € N}, with
controllable subset . := U{X. x|k € N} and uncontrollable

subset X, := U{X, x|k € N}. The component agents Gy (k =
1,2,...,N) are implicitly coupled through a specification
language £ C X* that imposes a constraint on the global
behavior of G, where E may be the synchronous product of
multiple component specifications (see [7] and subsequent
literature, e.g., [16]).

We say that E is controllable wrt. G if EX,NL(G) CE
[18]. Whether or not a specification language E is control-
lable, we denote by €'(E) the family of all sublanguages of
E,ie, % (E):={KCE|KX,NL(G)CK}. The empty lan-
guage 0 belongs to € (E). Furthermore, € (E) has a (unique)
supremal element sup % (E) := U{K|K € €(E)} [18]. For
the plant G and the imposed specification E, the optimal and
nonblocking monolithic supervisor SUP = (X, X, &, xp, X,,)
is such that L,,(SUP) := sup €’ (E N L, (G)) [5]. In the fol-
lowing, we assume that L,,(SUP) # 0, and SUP is feasibly
computable.

The key concept of supervisor localization is control cover,
adapted from [12] for supervisor reduction. Note that the
control information in X.; (concerning only the control-
lable events in X) is characterized by the following four
functions. Let G = (Q,X, 8,40, 0m), SUP = (X, X, &, x0,X;n)
and define E : X — Pwr(X) as E(x) = {0 € X | {(x,0)!},
where Pwr(-) denotes powerset. Thus E(x) is the subset
of events that are enabled at state x in SUP. Next de-
fine Dy : X — Pwr(Z.x) according to Di(x) = {0 € L 4 |
-&(x,0)! & (3s € 2*)(&(x0,5) = x & 8(qo,50)!)}. Thus
Dy (x) is the subset of controllable events in X.; that must
be disabled at x in SUP. We say that x is a ‘don’t care’
state for event o if ¢ ¢ E(x) and 0 ¢ Dy(x). Then define
M :X — {0,1} according to M(x) = 1 if and only if x € X,,,.
So M(x) = 1 means that state x is marked in SUP.
Finally define 7 : X — {0,1} according to T(x) =
1 if and only if (s € T*)&(x0,5) = x & 6(qo,s) € Om.
Hence T'(x) = | means that there exists a string that reaches
x and also reaches some marker state in G. Based on the
above four definitions, a binary relation % on X is defined

[5].

Definition 1 Let %), C X x X. We say that %y is a control
consistency relation (w.r.t. Z.) if for every x,x' € X, (x,x') €
Py, if and only if

(1) E(x)NDy(x') =0 =E(x') N Dy(x)
(2) T(x) = T(¥) = M(x) = M().

Obviously, %} is reflexive and symmetric, but need not be
transitive. Thus it is not an equivalence relation on X. This
fact leads to the following definition of control cover [5].
Recall that a cover of a set X is a family of nonempty subsets
(or cells) of X whose union is X.

Definition 2 Ler 6, = {X; C X |i € It} be a cover of X, with
I;. a suitable index set. We say that 6, is a control cover of
X (wrt. Zeg) if
(1) (Vi€ I,¥x,x' € X;)(x,x') € %y
(2) (Vi € I,Vo € Z)%((Elx € X)é(x,0)!) = ((3j €
I)(VY € X)E(W,0)! = E(xX,0) € X;)].

The subsets X; (i € I;) are the cells of 4. A control cover
©x is a control congruence if 6, happens to be a partition
of X, namely its cells X; are pairwise disjoint.

With the control cover %) of X, a nonblocking local con-
troller LOC;, for agent Gy can be constructed by the local-
ization procedure in [3][5]. Since the cells of a control cover
may overlap, the constructed local controller may not be
unique. One would like to obtain local controllers of mini-
mal number of states; the minimal state problem is, however,
NP-hard [5, Appendix B]. As a generalization of supervisor
reduction algorithm, a polynomial localization algorithm,
which generates control congruences instead of covers, is de-
veloped in [3][5]. The localization algorithm is implemented
in TCT [17] by computing {LOC;,LOC,,...,LOCy} =
Localize(G,{G1,Ga2,...,Gy},SUP), where plant G, agents
G (k € N), and the monolithic supervisor SUP are input
generators, and local controllers LOC; (k € N) are output
generators. Thus a set of local controllers {LOCy | k € N},
one for each agent, with L(LOC) := |[{L(LOCy)|k € N}
and L, (LOC) := |[{L,(LOCy)|k € N} such that L(G) N
L(LOC) = L(SUP) and L,,(G)NL(LOC) = L,,(SUP) hold.

The time complexity of the localization algorithm is O(n*),
where n is the state number of SUP. Since control consis-
tency of some state pairs may be checked repeatedly in the
algorithm (as illustrated in Fig. 1), we are motivated to im-
prove its complexity by avoiding these repeated checks.

3 A NEW LOCALIZATION ALGORITHM

In this section we first present a new and more efficient
polynomial algorithm to compute a control congruence from
which a local controller is generated. We call this algorithm
Fast Localization Algorithm (FLA); it is a variation of the
localization algorithm in [3][5] and the reduction algorithm
in [12]. Then we analyze the time complexity and space
complexity of FLA.

3.1 Algorithm Description

First, we sketch the idea of FLA. Given a supervisor SUP =
(X,X.U%,, €, x0,Xp), let the states in X be labeled as X =
{x0,%1,..., Xx4—1} and E.; C X, be the set of controllable
events of agent Gy (for a fixed k € N). The proposed FLA
will generate a control congruence ¢ of X w.r.t. X ;.

Initially, % is set to be the singleton partition of X, i.e.,

6 :={xi]| ={x}li=0,1,....n—1} =
{beol, Peals s e]}

where [x] denotes the cell in %} to which x belongs. For a
state x, we call other states X’ € [x] the equivalent states of
x; for a state pair (x},x), we call other state pairs (x;,x;) €
[x}] x [x}] the equivalent state pairs of (x;,x};). Then FLA
‘merges’ two cells [x]] and [x] into one if for every x; € [x]]
and x; € [x], x; and x;, as well as all their corresponding fu-
ture states reachable by identical strings, are control consis-
tent in terms of % (Definition 1). This ‘mergeability’ condi-
tion is checked by a function called CHECK_MERGE in the

pseudocode below. This CHECK_MERGE function checks
control consistency of the current state pair (x;,x;) at line
21 and recursively checks for all their corresponding future
states at lines 25-33. The arguments of the CHECK_MERGE
function are a state pair, a ‘waiting list” W, and the in-
dex i (with current value from line 4). Here the waiting list
W C X x X stores all the state pairs whose future states are
waiting to be checked for control consistency. So far the el-
ements introduced above are inherited from [3][5][12]. The
following are five new elements in our proposed FLA.

(1) A ‘mergeable list’ \/_list C X x X stores all the state
pairs that can be merged, that is, they satisfy the merge-
ability condition.

(2) A ‘non-mergeable list’ x_list C X x X stores all the
state pairs that cannot be merged, that is, they dissatisfy
the mergeability condition.

(3) An ‘index’ pos(x;,x;) € {1,2,...,n(n—1)/2} records
the position number of (x,,x j) stored in the waiting
list W. For instance, if pos(xi,xj) = 3, this means that
(xi,x;) is the third state pair in W.

(4) A ‘dynamic list’ dynamic(x;,x;), initialized at
line 24, stores all the state pairs in the wait-
ing list W that determine the mergeability of x;
and x;. Note that, if there exist two state pairs
(xl,x]) (x/,x7) such that (x},x;) € dynamic(x;,x;) and
(', x7) € dynamlc(xl,xj) then by transitivity we do
not need to have (x{,x) € dynamic(x;,x;).

(5) root(xi,x;) records the minimal position number of the
state pairs in the waiting list W that determine the
mergeability of x; and x;.

Now we present the pseudocode of FLA. The MAIN
procedure consists of lines 1-13, and it calls the func-
tion CHECK_-MERGE at line 10. CHECK_MERGE consists
of lines 14-38, and it calls at line 37 another function
DRAWN_CHECK_MARK (lines 39-43).

1: procedure MAIN()
2: /st :=0;

3: x_list :=0;

4: fori:=0ton—2do

5 if i > min{m|x,, € [x;]} then continue;

6 for j:=i+1ton—1do

7: if j > min{m|x,, € [x;]} then continue;

8 if {(xi,x;), (xj,x;)} N x_list # 0 then continue;
9 W =0,

10: CHECK_MERGE (x;,x;,W,i);

11: for each (x,,x,) € W do

12: if {(xp,xq), (x4,xp)} N/ list = 0 then

x_list := x_list U{(xp,xq)};

[xp] U fxgl;
14: function CHECK_MERGE(x;,x;, W, i)

13: else [x,] = [x;] :==

b UUL I { (1), (xi,x) } N W 7 0} do
Pl UL (e, x), (g, 0) y W 7 0&
(1}

15: for each x, €

16: for each x, €

17: if {(x,,%4),(xg,%5)} "W % 0 then
18: dynamic(x;,x;) 1= dynamic(x;,x;) U{(xp,x4) };
19: continue;
20: if {(xp,xq), (x4,xp) } N x _list # O then return false;
21: if (x,,x5) & Zx then x _list := X _list U{(xp,x4) };
return false;
22: W i=WU{(xp,x4)};
23: root(xp,x4) = root(xq,xp) := pos(xp,Xq);
24: dynamic(xp,xq) == {(xp,x4) }:
25: for each o € X with (x,,0)! & (x4, 0)! do
26: if [£(x,,0)] = [£(x4,0)] then continue;
27 if {(§(xp,0),8(x4,0)),(§(x4,0),5(xp,0)) 0
W # 0 then
28: dynamic(x,,x4) := dynamic(xp,xq)U
{(8(xp, 0),8(x4,0))};
29: continue;
30: if {(S(xp,0),6(x4,0)), (6 (x4,0),6(xp,0)) N
x _list # (then return false;
31: if min{m|x,, € [§(x,,0)]} < i or min{m|x,, €

(& (x4,0)]} < i then return false;

32: if CHECK_MERGE(¢ (x),0), & (x4,0), W, i) =
false then return fal se;

33: dynamic(x,,x,) := dynamic(xp,x4)U
{(8(xp,0),8(x4,0)) }
34: root (xp,x,) := min{root (x),, x;)|(x), x;) €

dynamic(x,,x4) };
35: dynamic(x;,xj) := dynamic(x;,x;) U{(xp,x4) };
36: root(xi,x;) = min{root(x,,x,)|(xp,X,) €
dynamic(xi,x;)};
37: if root(x;,x;) > pos(xi,x;) then
DRAWN_CHECK_MARK (x;,X;);
38: return true;
39: function DRAWN_CHECK_MARK(x;, X;)
40: if {(x;,x;), (xj,x;)} N+/-list # O then return;
41: /list := \/list U{(x;,xj)};
42: for each (xp,x,) € dynamic(x;,x;) do

43: DRAWN_CHECK_MARK(x), X,);

Throughout the merging process, in order to generate a con-
trol congruence, it is crucial to prevent states from being
shared by more than one cell. It is achieved by inserting

three filters at lines 5, 7, and 31 in FLA (which are the same
as [3][5][12]). The proposed algorithm loops until all the
state pairs (x;,x;) € X x X are checked by lines 4-13. For
convenience, the “(i, j)th iteration” denotes the iteration that
determines the mergeability of x; and x;.

Furthermore, and this is new in FLA, to eliminate any re-
peated control consistency checks and guarantee that every
state pair will be checked exactly once, several additional
filters are inserted at lines 8, 17-20, and 26-30. For every
state pair, there is only one chance to be checked in FLA;
that is, only state pairs that have not been checked can pass
through the above newly added filters. Therefore, the role
of these filters is to exclude repeated control consistency
checks and thereby speed up the localization process.

Comparing with the original CHECK_MERGE function in
[3][5][12], we have added the following lines.

(1) Lines 18 and 35 are used to record the state pairs that
directly determine the mergeability of x; and x;; lines
28 and 33 are used to record the state pairs that directly
determine the mergeability of x,, and x,.

(2) Line 36 is added to obtain the smallest position num-
ber of the state pairs that determine the mergeability
of x; and x;; line 34 is added to obtain the smallest
position number of the state pairs that determine the
mergeability of x, and x,.

(3) Line 23 records the position number of state pair (x;,x;)
inW.

(4) A new function DRAWN_CHECK_MARK is called by

CHECK_MERGE at line 37, where DRAWN_CHECK_MARK

consists of lines 39-43. The condition root (x;,x;) >
pos(x;,x;) in line 37 is critical, which means that the
mergeability of x; and x; is determined by only those
state pairs having no smaller position number than
(xi,xj) in W.

In what follows, we briefly describe how FLA updates the
two new lists: \/_list and X _list.

(1) When checking mergeability of states x; and x;, if all
their corresponding future state pairs (if they exist) sat-
isfy the mergeability condition according to the proce-
dure, and the position numbers of these state pairs are
no smaller than that of (x;,x;), i.e., (x;,x;) can pass
line 37, then the mergeability of x; and x; is confirmed,
and we can add all the related state pairs to +/_list by
lines 39-43; otherwise the mergeability of x; and x; is
still pending ((x;,x;) cannot pass line 37), and we do
not add these related state pairs to +/_list.

(2) When checking mergeability of cells [x;] and [x;], if all
the related state pairs are confirmed to be mergeable,
then all the related state pairs will be added to +/_list
by lines 39-43; if there exits one pair of states that
cannot be merged, i.e., the state pair fails at a line of
lines 20, 21, or 30-32, then the state pair will be added
to x_list by line 21, and all the state pairs that are in
W, but not in +/_list, will be added to x _list by line 12.

Based on the above outline, we present in the following the

detailed updates of /_list and X _list according to the steps
of the proposed algorithm.

(1) Suppose that (x,,x4) ¢ Z. By line 21, (x,,x,) will
be added to x _{ist, and CHECK_MERGE (x;,x;,W,i) =
false. It follows from line 12 that all the state pairs that
are in W, but not in /_list, will be added to x _list,
and the checking operation for mergeability of x; and
x; will be terminated.

(2) Suppose that (x,,x;) € %, and (x,,x,) has no
corresponding future states. Thus roor(xp,x;) =
pos(xp,xg) =1, and (x,,x,) passes line 37. It follows
from line 41 that \/_list := /_list U {(x,,x4)}. Hence
the checking operation for mergeability of x, and x,
will be terminated, and then the mergeability of other

state pairs x;, and x; that have not been checked will
continue to be verified.

(3) Suppose that (x,,x,) € %, and there exist some events
01,02,...,0; € L such that &(x,,0)! and &(x,,0)!,
where o € {01,02,...,0;}.

(3a) If &(xp,0) and &(x,4,0) have no corresponding
future states, where 6 € {0y, 0,,...,0;}, then the
mergeability of &(x,,0) and & (x,,0) is checked
as follows.

(1) If they satisfy the condition of line 26, then
go to Step (v) below; otherwise go to Step
(ii).

(i) If they fail atline 27, i.e., (& (xp,0),E(x4,0))
or (§(x4,0),&(xp,0)) is in W, by lines
27-29, then (§(xp,0),&(xy,0)) is added to
dynamic(x,,x4), and go to Step (v) below;
otherwise go to Step (iii).

(iii) If they fail at line 30 or line 31, by line 12,
then all the state pairs that are in W, but not
in 4/_list, will be added to x_list, and the
checking operation for mergeability of x; and
x; will be terminated.

(iv) If they fail at line 32, then CHECK_MERGE
(xi,xj,W,i) = false. 1t follows from line 12
that all the state pairs that are in W, but not
in 4/_list, will be added to x_list, and the
checking operation for mergeability of x; and
x; will be terminated.

(v) The mergeability of the other corresponding
future states that have not been checked will
continue to be verified by repeating Steps
(1)—(v). Assume that all the future state pairs
(&(xp,0),&(x4,0)) pass lines 26-33. Then
we calculate the smallest position number of
(xp,xg) in W by the dynamic list of (xp,x,).
If (x,,x,) satisfies the condition of line 37,
then all the related state pairs will be added
to /_list; otherwise the mergibility of x,, and
x4 is still pending, and (x,,x,) will not be
added to +/_list. Hence the checking opera-
tion for mergeability of x, and x, is termi-

nated, and the mergeability of other states x;

and x’q that have not been checked will con-
tinue to be checked.

(3b) If there exists an event ¢’ € ¥ such that
&(&(xi,0),0')! and &(E(xj,0),0")!, then the
mergeability of £ (& (x;,0),0") and § (& (xj,0),07)
will be checked recursively in the same way as
Step (3a).

An example that illustrates the steps of FLA in detail can
be found in the conference precursor [20].

3.2 Complexity Analysis

In this subsection, we study the time complexity and space
complexity of the proposed FLA. First, we analyze the time
complexity.

Theorem 1 Given a supervisor SUP with state set X and
|X| =n, FLA terminates in finite steps, has (worst-case)
time complexity O(n?), and the generated 6 is a control
congruence of X.

Proof. According to lines 4 and 6, the MAIN procedure
can call the function CHECK_MERGE (at line 10) at most
n(n—1)/2 times. In each call of CHECK_MERGE, the main
operation is to check whether or not (x;,x;) € % for fixed
i and j involved in that call (the same as [3][5][12]). The
key here is to show that by lines 5, 7, 8, 17-19, and 26-31
that control consistency of (x;,x;) will be checked exactly
once in the entire process (from start to termination of FLA).
To prove this statement, we need to consider two cases as
follows.

(1) Assume that control consistency of (x;,x;) has been
checked in a previous (i’, j')th iteration (i.e., i’ < i, or
i’ =iand j' < j). Thus (x;,x;) must be in either /_list
or x_list. (Case i) If (x;,x;) € \/_list, by line 13, then
states x; and x; had been merged into one cell in the
(¢, j))th iteration. According to lines 5, 7, 26, and 31,
the (i, j)th iteration will be terminated, and thus control
consistency of (x;,x;) will not be checked again in the
remaining iterations. (Case ii) If (x;,x;) € x_list, by
lines 8, 20, and 30, then control consistency of (x;,x i)
will not be checked again in the remaining iterations.

(2) Assume that control consistency of (x;,x;) has not been
checked in any previous iterations and will be checked
in the current (i, j)th iteration. (Case i) If (x;,x;) & %k,
by line 21, then (x;,x;) will be added to x_list, and the
(i, j)th iteration will be terminated. By lines 8, 20, and
30, control consistency of (x;,x;) will not be checked
again in the remaining iterations. (Case ii) If (x;,x;) €
P, by line 22, then (x;,x;) will be added to W, by lines
17-19 and lines 27-29, control consistency of (x;,x;)
will not be checked again in the (i, j)th iteration. When
the (i, j)th iteration is finished, by (1) above, control
consistency of (x;,x;) will not be checked again in the
remaining iterations.

Thus, control consistency of each state pair will be checked
exactly once. So the total number of checking operations
(calls from the MAIN procedure and the recursive calls from
the functions CHECK_MERGE) is at most |Z|n(n—1)/2,
where |Z| is due to line 25.

Therefore FLA terminates in finite steps, and has (worst-
case) time complexity O(n?).

Finally, since lines 5, 7, and 31 ensure no element overlap-
ping among cells in %, the resulting %}, is a partition of X
(the same as [3][5][12]). It then suffices to show that % is
a control cover; namely the two conditions (1) and (2) of
Definition 2 in Section 2 are satisfied. That condition (1)
holds is guaranteed by line 21: no two states in the same cell
can be control inconsistent; and (2) holds by lines 25-33:
recursively check control consistency of their future states
reached by identical strings. Therefore we derive that the
resulting % is a control congruence, as required. (]

Theorem 1 shows that control consistency of each state pair
will be checked exactly once in FLA. Therefore in compari-
son with the reduction algorithm in [12] and the localization
algorithm in [3][5], the time complexity of FLA is reduced
from O(n*) to O(n?).

Example 1 7o illustrate the reduction in time complexity,
consider an example similar to that in Fig. 1. Given a super-
visor SUP = (X,%, &, x0,X,n) which has the same structure
as the one in Fig. 1, but with X = {xo,x1,..., Xp—1}. The
number of state pairs is n(n— 1) /2. The state pair transi-
tion diagram of SUP is displayed in Fig. 2. Suppose that
all the state pairs but (x,—2,X,—1) are control consistent. If
we adopt the algorithm in [3][5][12], then control consis-
tency of every state pair (except for the first (xo,x1)) needs
to be checked repeatedly (for the same reason as the ex-
ample in Fig. 1). In fact the total number of checking op-
erations is n(n—1)/2+ (n(n—1)/2—-1)+---4+2+1=
(n* —2n 4+ 3n% —2n) /8. If we use FLA, then all the check-
ing operations only take place once and only in the first it-
eration for determining the mergeability of states xy and x1,
that is, control consistency of all the state pairs will not be
checked again in the remaining iterations. Hence the total
number of checking operations is n(n— 1) /2. Therefore, this
example demonstrates that the proposed algorithm improves
the computational efficiency.

Remark 1 7o avoid any repeated control consistency
checks, +/list, x_list, pos(xi,x;), dynamic(x;,x;) and
root(x,-,xj) are used in FLA. Using these new elements, on
the other hand, makes the order of merging states in FLA
different from the order used in the reduction algorithm in
[12] and the localization algorithm in [3][5]. As a result,
the control congruence 6, generated by FLA is generally
different from those generated in [3,5,12]. In general, the
state sizes of the resulting reduced/local controllers are
incomparable. An example showing that FLA generates a
local controller with a smaller state size than that generated
by algorithms in [3][5][12] can be found in the conference
precursor [20]. The reverse case is also possible, as can be
seen in the examples given in Section 1V below.

The improvement of time complexity achieved by FLA is
by means of properly using a number of new elements (e.g.
/ist, x_list, pos(xi,x;), dynamic(x;,x;) and root (x;,x;)).
Thus intuitively, these new elements increase FLA’s (worst-
case) space complexity. The following is the space complex-

. On(n—1)/2—1

(o] () g3
(I07I1) (I07I2) (7J0,I3) (In—27In—1)

Fig. 2. State pair transition diagram.

ity of FLA.

Theorem 2 Given a supervisor SUP with state set X and
|X| = n, FLA has (worst-case) space complexity O(n*).

Proof. The storage space of FLA includes W, \/_list, x list,
pos(x;,x;), dynamic(x;,x;) and root (x;,x). For the state pair
(xi,x;), in the worst case W has n(n—1)/2 state pairs, that
is, all the state pairs are included in W by line 22. Note
that W is initialized as an empty set after each state pair
is checked by line 9, so the storage space for storing W
is then O(n?). Since all state pairs are uniquely stored in
either 4/ list by line 12 or x_list by line 41, the storage
spaces of \/_list and x _list are both O(n?). dynamic(x;,x;),
initialized at line 24, stores all the state pairs in the wait-
ing list W. To determine the mergeability of x; and x;, all
their corresponding future states are checked recursively at
lines 25-33. Hence for each state pair (x;,x;), there are at
most n(n— 1)/2 state pairs need to be checked, which im-
plies that the storage space for storing dynamic(x,,x,) (lines
28 and 35) is then O(n?). There are n(n—1)/2 state pairs
(lines 4 and 6), so the storage spaces of dynamic(x;,x;) is
O(n*). In addition, pos(x;,x;) € {1,2,...,n(n—1)/2} and
root(xi,x;) € {1,2,...,n(n—1)/2} record the position num-
ber and the minimal position number of (x;,x;) stored in the
waiting list W by line 23 and line 36, respectively. There
exist at most n(n—1)/2 state pairs (x,,x,) to be checked
by the function CHECK_MERGE (lines 15-16), so the stor-
age spaces for storing pos(xp,x,) and root(x,,x,) are both
O(n?). There are n(n— 1) /2 state pairs totally (lines 4 and 6),
thus the storage spaces for storing pos(x;,x;) and root (x;,x;)
are O(n*). Hence the total storage space for storing all the
associated lists is O(n*). O

Remark 2 The function CHECK_MERGE in FLA has the
same arguments x;, xj, W, and i as those in [3][5][12]. On
the other hand, pos(x;,x;), dynamic(x;,x;), root(x;,x;), and
two global variables +/list and X _list are newly added in
FLA. From the above discussion, we know that the space
complexities of W, \/_list, and x list are O(n*). However,
the space complexities of pos(xi,xj), dynamic(x;,x;), and
root (x;,x;) are O(n*) in the worst case. Our proposed algo-
rithm has higher space complexity than those in [3][5][12].
Although FLA consumes extra storage space, it substantially
improves the time complexity. It is an open problem if it is
possible to design a reduction/localization algorithm whose
time complexity and space complexity are both O(n?).

To end this section, we provide two examples to illustrate the
space complexity of FLA. The first example shows a case
in which the worst-case space complexity O(n*) is needed.
On the other hand, the second example shows a case where
only an O(n?) space complexity is required.

Example 2 Given a supervisor SUP = (X,X,&,x0,Xin),
where X = {xo,x1,..., X,—1}. We consider the state pair

Table 1
Comparison of computing times (in seconds) by FLA and the
algorithm in [5] for Example 1

n 100 120 140 160 180 200 220 240 260 280 300
[5] 1 2 3 8 15 31 45 56 81 117 168
FLA <1 <1 <1 <l 1 1 1 2 2 2 4

transition diagram of SUP given in Fig. 2. Suppose that all
the state pairs in Fig. 2 are control consistent. Initially, we
have /_list =0, x _list =0, and dynamic(x;,x;) = {(xi,x;)},
where i € {0,1,....n—2},j€{1,2,....n—1}, and i < j.
Notice that control consistency of all the state pairs will
be checked in the (0,1)th iteration. After the (0,1)th it-
eration, all the state pairs will be added to +/_list. Then
x _list = 0. So, the storage space for storing +/_list and
x _list is O(n*). It follows from Theorem 1 that control
consistency of all the state pairs will not be checked
again in the remaining iterations. Since dynamic(xo,x;) =
{(x0,x1) } Udynamic(xo,x2), dynamic(xo,x2) = {(x0,x2)} U
dynamic(xo,x3), - .., dynamic(xy2,% 1) = { (¥a-2,%11)},
we have dynamic(xy,x1) = {(x0,x1), (x0,%2), - -, (Xn—2,%—1) },
dynamic(xo,x3) = {(x0,%2), (X0,%3),- -+, Cn—2,Xu—1)}, ---,
dynamic(xp—2,%p—1) = {(Xn—2,Xn—1)}. Thus the total num-
ber of state pairs in all the associated lists is n(n—1)/2+
(nn—1)/2 1)+ +2+1= (n*—2n> 4+ 3n> — 2n)/8.
Consequently, the storage space for storing all the as-
sociated lists is O(n*). Furthermore, by Theorem 2, the
storage space for storing W is O(n?). Therefore, the space
complexity of FLA is O(n*).

Example 3 We consider the same supervisor SUP and the
same State pair transition diagram as those in Example 2.
Suppose that all the state pairs but (x,_2,X,—1) are control
consistent. Similarly, control consistency of all the state pair
will be checked only in the (0, 1)th iteration. After the (0, 1)th
iteration, all the state pairs will be added to X _list. Thus
V/list = 0. So the storage space for storing X _list and +/_list
is O(n*). We also have dynamic(x;,x;) = {(x;,x;)} for all
i€{0,1,....n—2},j€{1,2,....,n—1}, and i < j. Hence
the storage space for storing all the associated lists is O(n?).
The storage space for storing W is O(nz). Based on the
above discussion, FLA has space complexity O(n?) in this
case.

4 Empirical Study

In this section, we empirically compare the computing times
of FLA and the localization algorithm in [3][5] with differ-
ent examples, where the computing time is obtained by a
software tool TCT [5].

4.1 Example 1 Continued

In Example 1, it was shown that FLA improves the worst-
case time complexity by the order O(n?), as compared with
the algorithms in [3][5][12]. Here # is the number of states
in the supervisor. To empirically validate this improvement,
we have tested this example for n ranging from 100 to 300
(with interval 20). The result is displayed in Table 1; the

1
G,

G’2 20

: @ :

Fig. 3. Small Factory.

¥ old = O(r)

Compute time [s]

v_new = O(n?)

©) (500) ' (1000)

Supervisor's state number[n] (BUF's state number)

Fig. 4. Comparison of the computing time of FLA and the local-
ization algorithm in [3][5] for Small Factory. The horizontal axis
represents the number of supervisor’s states. The horizontal brack-
ets (0), (500), and (100) represent the number of buffer’s state.
The vertical axis is the computing time in seconds.

unit is second for rows 2 and 3. As one can observe, the
increase of computing time by FLA is much slower than that
by the algorithm in [5] (similarly by those in [3,12]). This
test empirically confirms our theoretic analysis of improved
efficiency.

4.2 Small Factory

We consider a version of Small Factory in [18] consisting
of one input machine G; and one output machine G, as
arranged in Fig. 3. We take a buffer with different slots
and consider only the buffer specification (protecting buffer
against overflow and underflow). We consider the case that
the capacity of buffer increases from 2 to 1000, and show
the computing time of FLA and the localization algorithm in
[31[5], respectively, in Fig. 4. The horizontal axis represents
the number of supervisor’s state. The horizontal brackets
represent the number of buffer’s state. The vertical axis is the
computing time in seconds. The blue curve represents the
computing time using the localization algorithm in [3][5].
The red curve represents the computing time using FLA.

As shown in Fig. 4, in this example the computing time of
the localization algorithm in [3][5] is of the order O(n?),
while it is O(n?) for FLA. Moreover, we have confirmed
that all the local controllers computed by both FLA and the
localization algorithm in [3][5] have exactly the same state
numbers.

4.3 Transfer Line

As displayed in Fig. 5, Transfer Line consists of two ma-
chines M1, M2 followed by a test unit TU; these three
agents are linked by two buffers B1, B2. A workpiece en-
tering the system is first processed by M1 and stored in B1,
then processed by M2 and stored in B2. A processed work-
piece tested by TU may be accepted or rejected; if accepted,
it is released from the system; if rejected, it is returned to
B1 for reprocessing by M2.

R C e I e G S E
x :

Fig. 5. Transfer Line.

Bi=2
035 y_old = O(n)

N » I\
o oz S 3

.
oy PRSP U WL T R W e S 2 —e—old localization

new localization

Compute time [s]

y_new = 0(n)

0 50 100 150 200 250
Supervisor’s state number

Fig. 6. Comparison of the computing time for the case that the
capacity of B1 is fixed at 2 and the capacity of B2 increases from
2 to 30.

B1=5

y_old = O(n®)

»
oA ®—old localization
"

o new localization

Compute time [s]
o
&
?

ey y_new = O(n)

o 100 200 300 400 500 600 700 800 900 1000

Supervisor’s state number

Fig. 7. Comparison of the computing time for the case that the
capacity of B1 is fixed at 5 and the capacity of B2 increases from
2 to 30.

Here we show the computing times of FLA and the local-
ization algorithm in [3][5], respectively for different cases.
Fig. 6 and Fig. 7 give the computation results for the cases
that the capacity of buffer B1 is fixed at 2 and 5 respectively,
while the capacity of B2 increases from 2 to 30. Fig. 8 and
Fig. 9 show the results for the cases that the capacity of
buffer B2 is fixed at 2 and 5 respectively, while the capacity
of B1 increases from 2 to 30. Same as Fig. 4, the horizontal
axis represents the number of supervisor’s state. The vertical
axis is the computing time in seconds. The blue curve rep-
resents the time using the localization algorithm in [3][5].
The red curve represents the time using FLA.

Observe that in all these cases the computing time of FLA
and the localization algorithm in [3] [5] are close (within a
fraction of a second) due to fairly small number of supervi-
sor’s state. In all cases, FLA has smaller or the same trend
of increase in computing time as compared to localization
algorithm in [3][5].

Tables 2, 3, 4 present the state numbers of local controllers
computed in the experiments corresponding to Fig. 6-9.
There are three controllable events {1, 3, 5} in Transfer
Line, thus three corresponding local controllers whose aver-
age state numbers are reported in Tables 2, 3, 4 respectively.

B2=2
0.2
018 y_old = O(n)
0.16 N
b o A Lo X #—old localization
_ 014 | Bgupe AT A AL KOREA UT
5 o1 new localization
£ y_new = O(n)
= 01 -
2
3 008
3
S 0.06
S
0.04
0.02
0
0 50 100 150 200 250 300 350 400

Supervisor’s state number

Fig. 8. Comparison of the computing time for the case that the
capacity of B2 is fixed at 2 and the capacity of B1 increases from
2 to 30.

B2=5
12
y_old = O(n?)
1 ~
—e—old localization
= 08 /
;‘ » new localization
£ o6 R ol
e b
g y ol y_new = O(n)
2 XLNA
£ 04 . eV
S > e dalin g
02
0
0 200 400 600 800 1000 1200

Supervisor’s state number

Fig. 9. Comparison of the computing time for the case that the
capacity of B2 is fixed at 5 and the capacity of B1 increases from
2 to 30.

Table 2
Average state comparison of the local controller for event 1.
Transfer Line IBI[=2 IBI[=5 B2[=2 B2 =5
* |B2]=(2,3,...,30) |B2|=(2,3,...,30) [Bl]=(2,3,...,30) |Bl|=(2,3,...,30)
Old Loc. Alg. 56 79 16 79
Fast Loc. Alg. 56 194 16 148
Table 3
verage state comparison of the local controller for event 3.
A tat f the local troller f t3
Transfer Line IBI=2 BI[=5 B2 =2 B2 =5
|B2|=(2,3,...,30) |B2|=(2,3,...,30) [Bl|=(2,3,...,30) |Bl|=(2,3,...,30)
Old Loc. Alg. 31 79 31 78
Fast Loc. Alg. 2 78 30 79
Table 4
Average state comparison of the local controller for event 5.
Transfer Line IBI[=2 BI[=5 B2[=2 B2 =5
: B2 =(23,..., 30) [B2]=(2,3,...,30) |B1]=(2,3,...,30) |Bl|=(2,3,...,30)
Old Loc. Alg. 46 159 31 239
Fast Loc. Alg. 47 158 2 238

It is observed that the state numbers are generally incompa-
rable between local controllers computed by FLA and the
localization algorithm in [3][5]. In many cases the state num-
bers are close, but there also exist situations where one is
much smaller than the other. Finally due to the current im-
plementation of these algorithms in TCT [5], in which it is
challenging to record consumed memory space, we leave an
empirical study of space complexity in our future work by
a new implementation in a possibly different software tool.

5 CONCLUSIONS

In this paper, we have extended the previous work on su-
pervisor reduction and supervisor localization for DES.

We have presented a fast algorithm for supervisor reduc-
tion/localization of DES by employing a mergeable list and
a non-mergeable list to store the checked state pairs. We
have shown that every state pair will be checked exactly
once in the whole process, and analyzed the time com-
plexity and space complexity of the proposed algorithm.
We have verified the time and space complexities of the
fast algorithm by several examples. In future work, we
aim to further evaluate space complexity of the proposed
algorithm, and inquire a design of a localization algorithm
which has both time and space complexity O(n?).

References

[1] Lucas VR Alves and Patricia N Pena. On the reduction and
localization of synchronizing supervisors. In 2021 American Control
Conference (ACC), pages 4491-4496. IEEE, 2021.

[2] Kai Cai, Alessandro Giua, and Carla Seatzu. Consistent reduction
in discrete-event systems. Automatica, 142:110333, 2022.

[3] Kai Cai and Walter Murray Wonham. Supervisor localization: a
top-down approach to distributed control of discrete-event systems.
IEEE Transactions on Automatic Control, 55(3):605-618, 2010.

[4] Kai Cai and Walter Murray Wonham. Supervisor localization
of discrete-event systems based on state tree structures. [EEE
Transactions on Automatic Control, 59(5):1329-1335, 2013.

[5] Kai Cai and Walter Murray Wonham. Supervisor localization: A
top-down approach to distributed control of discrete-event systems,
2016.

[6] C. G. Cassandras and S. Lafortune. Introduction to discrete event
systems (3rd ed.), 2021.

[71 Feng Lin and Walter Murray Wonham. Decentralized supervisory
control of discrete-event systems. Information sciences, 44(3):199—
224, 1988.

[8] Liyong Lin, Yuting Zhu, and Rong Su. Synthesis of covert actuator
attackers for free. Discrete Event Dynamic Systems, 30:561-577,
2020.

[9] Liyong Lin, Yuting Zhu, Ruochen Tai, Simon Ware, and Rong Su.
Networked supervisor synthesis against lossy channels with bounded
network delays as non-networked synthesis. Automatica, 142:110279,
2022.

[10] Robi Malik. Supervisor reduction by hiding events. [FAC-
PapersOnLine, 53(6):1-6, 2020.

[11] Peter J Ramadge and W Murray Wonham. Supervisory control of
a class of discrete event processes. SIAM journal on control and
optimization, 25(1):206-230, 1987.

[12] Su Rong and Walter Murray Wonham. Supervisor reduction for
discrete-event systems. Discrete Event Dynamic Systems, 14:31-53,
2004.

[13] Rong Su and Walter Murray Wonham. What information really
matters in supervisor reduction? Automatica, 95:368-377, 2018.

[14] Ruochen Tai, Liyong Lin, and Rong Su. Identification of system
vulnerability under a smart sensor attack via attack model reduction.
IEEE Control Systems Letters, 6:2948-2953, 2022.

[15] Anthony Faria Vaz and William Murray Wonham. On supervisor
reduction in discrete-event systems. International Journal of Control,
44(2):475-491, 1986.

[16] Yosef Willner and Michael Heymann. Supervisory control of
concurrent discrete-event systems. International Journal of Control,
54(5):1143-1169, 1991.

[17] W. M. Wonham. Design software: XPTCT. Systems Control Group,
ECE Dept., University of Toronto, Toronto, ON, Canada, 2017.

[18] W Murray Wonham, Kai Cai, et al. Supervisory control of discrete- Control and Optimization, 25(3):637-659, 1987.

event systems, 2019. [20] Lihua Wu, Kai Cai, Renyuan Zhang, and Yingying Liu. An
[19] W Murray Wonham and Peter J Ramadge. On the supremal o(n?) algorithm for supervisor reduction/localization of discrete-event
controllable sublanguage of a given language. SIAM Journal on systems. [FAC-PapersOnLine, 53(4):211-216, 2020.

10

